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Abstract— This past decade, the use of artificial intelligence,
and more precisely deep learning, has been really efficient in
image processing, especially in object detection and image seg-
mentation. In the medical field, retinal imaging represents an
important area of research with a great clinical interest. Indeed,
the observation of the retinal layers is helpful in the diagno-
sis, treatment and monitoring of plenty of retinal pathologies.
In this context, this project was focused on using deep learning
for OCT retinal layers segmentation. To do so, a UNET-VGG16
model has been employed and the method was evaluated on a
Duke OCT database of 4780 B-scans. It succeeded in segment-
ing three retinal layers with an IoU of 0.529 and a Dice coeffi-
cient of 0.685. To go further, the use of data augmentation, pre-
processing and post processing functions could solve some issues
and improve the method.
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I. INTRODUCTION

Retinal imaging has revolutionized the way to identify
pathologies and monitor response to therapy. It is an eminent
tool in the prediction, diagnosis and monitoring of the major-
ity of retinal diseases, but also other pathologies such as car-
diovascular and neurodegenerative diseases. Studies have be-
sides shown that the changes in the retinal structure occur be-
fore the patient experiences vision problems. Consequently, a
relevant scanning of the retina is crucial in numerous aspects
of the healthcare domain.

Facing the lack of techniques for a depth diagnosis of the
retinal structure, OCT has appeared to be one of the most
used methods in ophthalmology for retinal observation. In-
deed, by being completely non-invasive, it provides images
without damaging the tissue. The OCT resolution is also
higher than the other medical imaging techniques. Accord-
ingly, it has become a widely-used and valuable method.

However, retinal OCT images are difficult to read and of-
ten suffer from speckle noise. The images can contain vary-
ing intensity and the movement of the patient during the pro-
cess is also responsible for image distortion. All of these fea-
tures result in a time-consuming diagnosis by the ophthal-
mology expert. Thus, there is a need for an automatic reti-
nal image analysis in order to improve the diagnostic process

and to deal with an ever-increasing number of patients suffer-
ing from retinal pathologies. Nevertheless, many traditional
techniques of retinal segmentation have failed to extract ac-
curately the desired information in the retina. The retina is
composed of 10 distinct layers, and is only a few hundred
micrometers thick. Thus, if the algorithm is not sufficiently
precise, it can lead to an incorrect visual prediction of the dis-
ease. In this context, despite a great variety of algorithms for
retinal OCT segmentation, a powerful use in clinical practice
remains a significant challenge. For this purpose, deep learn-
ing approaches have been largely used in the last decade and
tend to be a promising solution.

In 2017, Roy et al. proposed ReLayNet, a variation of the
U-Net network [1]. The model has a fully convolutional deep
architecture, for an end-to-end semantic segmentation of reti-
nal OCT B-scan into 7 retinal layers and fluid masses. Al-
though it achieves well performance in retinal segmentation,
it is easily affected by image degradation and poor spatial res-
olution. Pekala et al. (2019) [2] proposed a set of fully con-
volutional networks together with a Gaussian process based
regression for improving the quality of the estimates. Their
model achieves comparable results with human annotation
of five OCT retinal layers but has slightly overestimated the
support of the retinal layers. In 2020, Li Q et al. proposed
DeepRetina [3]. Used as a backbone, an improved version
of Xception65 extracts and learns the characteristics of reti-
nal layers to create feature maps next inputted to an ASPP
module. The multiscale feature information obtained is then
recovered to capture clearer retinal layer boundaries using an
encoder-decoder module. The model successfully segments
ten retinal layers but still has difficulties to achieve an accu-
rate segmentation because of the low resolution of the retinal
OCT image and noise-induced interference. In 2021, He et al.
[4] combine the two steps of pixel classification and topologi-
cal smoothing into a unique end-to-end deep learning process
by directly modeling the distribution of the surface positions.
The model succeded to delineated nine retinal surfaces but it
is easily affected by bad quality images and artifacts. More-
over, their topology module updates the surfaces iteratively
from top to bottom, which may affect the lower surfaces with
bad estimates of the upper surface.

The different authors used different metrics and databases
than our study. Therefore, comparison is difficult and further
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experiments with a common dataset should be conducted to
conclude the respective effectiveness.

II. MATERIALS AND METHODS

A. Environnement

For this project, the python environment has been cho-
sen, with the use of the Keras and the Tensorflow-GPU li-
braries. The requirements are the following : python = 3.10.8,
keras=2.10.0, tensorflow=2.10.1.

B. Database

The database used in this study was the Duke University SD-
OCT Dataset [5]. Only the B-scans from the subjects without
AMD have been used. It represents 4780 images, randomly
sorted in three sets following the 90%/10% distribution: 3824
scans for the training set, 478 for the testing set and 478 for
the validation set. As the database was originally in .mat for-
mat for a MATLAB utilization, the first step was to transform
the images into a .tif format, more suitable with a python en-
vironment. Each image has its corresponding mask, resulting
from the segmentation of 3 of the retinal layers, which are
the inner limiting membrane (ILM), the Bruch’s membrane
(BM) and the retinal pigment epithelium (RPE). The figure 1
presents one scan of the database with its mask superimposed
to situate the boundaries.

Fig. 1: OCT scan with the inner limiting membrane (ILM), the Bruch’s
membrane (BM) and the retinal pigment epithelium (RPE) labeled

C. Model Overview

The aim of the study was to build an end-to-end algo-
rithm which takes in input an OCT B-scan and gives in
output a mask presenting the three boundaries correspond-
ing to the inner limiting membrane, the Bruch’s membrane
and the retinal pigment epithelium. The model is largely in-
spired by the structure of the U-NET network [6], with a
down-sampling and an up-sampling sections. The encoder,

or down-sampling, phase corresponds to the 17 first layers of
the VGG16 network, with the ImageNet weights [7].

As this project is focused on image segmentation, the last
3 fully connected layers have been removed and replaced by
a decoder phase, proper to the U-Net architecture, using skip
connections. The final structure of the model is presented on
the figure 2.

Fig. 2: Architecture of the proposed model

D. Metrics

For determining objectively the performance and quality of
segmentation methods, metrics have to be used. During the
training phase of the algorithm, the metrics used were the
Precision, the Recall, the Dice coefficient and the Intersec-
tion over union parameter. During the validation process, the
Accuracy has been also computed in addition of these pa-
rameters. The Dice similarity coefficient and the Intersection
over Union are both widely used metrics for biomedical im-
age segmentation due to their robustness to class imbalance.

Intersection-Over-Union (IoU): also called the Jaccard In-
dex, it corresponds to the ratio of the area of overlap between
the predicted segmentation and the ground truth (image la-
beled by an expert) among the area of union between the pre-
dicted segmentation and the ground truth.

IoU =
|A∩B|
|A∪B|

(1)

where A represents the ground truth and B the segmentation
predicted by the algorithm.

Dice coefficient: or F1 score, it is two times the area of
overlap divided by the total number of pixels in both the pre-
dicted image and the ground truth.

Dice coe f =
2∗ |A∩B|
|A|+ |B|

(2)

Lastly, the Dice loss coefficient, used during the training
phase as the loss function, is determined by :

Dice loss = 1−Dice coe f (3)
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E. Training of the model

First, the database is split into the training, testing and eval-
uating datasets, according to the 90%/10% ratio. Both the
OCT images and their labeled images are then read and re-
sized into 512x512 images. After that, the proposed model
is loaded and compiled using the Keras library. The func-
tion compile() takes in arguments the metrics presented in
the precedent subsection, the dice loss as the loss function,
and the Adam optimizer with a learning rate of 10−5.

The model is then trained using the model.fit() method
with an epoch’s number of 25. ModelChekpoint callback is
also used in conjunction with model.fit() to save the best ver-
sion of the model computed along the training. Therefore, the
model can be loaded later to continue the training from the
state saved. The ReduceLROnPlateau function is also used
to reduce the learning rate by 10 when a metric has stopped
improving during 5 consecutive epochs.

F. Model evaluation:

The evaluation phase takes in input the 478 images of the
evaluation set. Using the model.predict() function of the
Keras library, a prediction is made for each of the input im-
ages for the three desired retinal layers. Then, to evaluate the
performance of the model, the predicted masks are compared
with the corresponding ground truth for all the B-scans. The
evaluation is made using the metrics presented in the subsec-
tion D.

III. RESULTS

After training the model on 3824 images and along 25
epochs, the evaluation has been made on 478 images. On the
figure 3, three B-scans from the database are presented with
their corresponding ground truth and predicted image. On
the plot a), the predicted mask is very similar to the ground
truth image, with is a promising result. The model has a good
capacity to fit precisely with the retinal layers’ boundaries.
However, it can also be noticed that the model is not perfect.
Indeed, with a bad contrast, as in the case b), all the bound-
aries have not been plotted entirely. In addition, it can be ob-
served that when the retina presents abnormalities in one of
its boundaries, such as the upper right of the inner limiting
membrane (ILM) in the plot c), the model hardly perceives
these differences.

In order to have a global idea of the efficiency of the seg-
mentation, the mean of the evaluation parameters has been
computed on all the validation set (478 images). The five met-
rics are: precision, recall, accuracy, IoU, and Dice coefficient.
The results are presented in the table 1 below.

Fig. 3: In the left, 3 B-scans of the dataset with their corresponding ground
truth and prediction mask, respectively in the center and the right of the

figure

Table 1: Mean of the five metrics used for the validation of the model

Metrics Mean value

Precision 0.685

Recall 0.686

Accuracy 0.996

IoU 0.529

Dice coef 0.685

Regarding the statistics, the accuracy is high, but this is
also due to the class imbalance of the retinal masks. For the
other metrics, the results are satisfactory but not good enough
to affirm that the model is clinically effective. Among the
metrics, the intersection over union parameter, IoU, is 0.529
and therefore relatively low. Improvement has to be done to
enhance these results.

Moreover, the evolution of the metrics has also been mea-
sured all along the training of the model. It shows for each of
the 5 metrics used (recall, precision, IoU, dice coefficient, and
dice loss) their evolution along the epochs during the training
and testing phases. On the training data, the metrics are still
improving at the end of the 25 epochs. However, the same
metrics on the testing data have stopped improving and be-
gun to decrease in the last epochs. More than that, the re-
call has only been decreasing on the testing set, from 0.95 to
lower than 0.70. This feature is a sign of over-fitting. When
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the number of epochs used to train a neural network model is
more than necessary, the model learns patterns that are spe-
cific to the training data. This makes the model unable to per-
form well on a new data set. Thus, this model gives high ac-
curacy on the training set but fails to achieve good accuracy
on the test set.

IV. DISCUSSION

At the end of the project, the model was capable of predict-
ing the 3 retinal layers expected. It has obtained first con-
vincing results, but a lot of work can still be done to improve
the performance. Indeed, some limitations can be noticed :
the model struggles to perform an accurate segmentation in
presence of images with low resolution or retinal layers ab-
normalities. Therefore, the model can not be generalized to
relevant retinal diseases because of its weakness to adapt to
changes. In order to ameliorate the model, the number of in-
put images can be increased by the use of data augmenta-
tion with the ImageDataGenerator function from the Keras
library. The model can also extend to the entire Duke dataset
with the retinal images of age-related macular degeneration
(AMD). By doing so, the model will generalize itself and be
able to segment at the same time different profiles of reti-
nal images. However, to take this a step further, the lack of
unified public retinal OCT datasets with retinal profiles from
various diseases makes it more difficult to create an algorithm
that can produce accurate segmentation for each type of reti-
nal OCT scan.

In parallel, it has been shown by looking at the results that
the model suffers from over-fitting, as the metrics have con-
tinued to improve along the epochs on the training set when
they were simultaneously stagnant or decreasing on the test-
ing set. Therefore, enriching the database is also a good solu-
tion to limit the over-fitting. Optimizing the number of epochs
to set is as well to take into consideration for avoiding over-
fitting in the continuation of this project.

Moreover, no pre-processing operation has be done on the
dataset. Nonetheless, it has been noticed that some of the reti-
nal images of the dataset suffer with low contrast or illumina-
tions which then tend to make the segmentation more difficult
by the algorithm. Indeed, it has been noticed that the model
do not have the same performance for each scan. Therefore,
preparing images should be a step further in this project. In
the same way, post processing operations can be useful to en-
hance the segmentation and give in output better prediction
masks.

V. CONCLUSION

The aim of the project was to segment OCT retinal images us-
ing deep learning. With this purpose, a Duke dataset has been
utilized containing 4780 B-scans of normal retinas. These
scans were labeled by an expert for three retinal layers : the
inner limiting membrane (ILM), the Bruch’s membrane (BM)
and the retinal pigment epithelium (RPE). The algorithm pro-
posed was created using a python environment and is largely
inspired of the U-Net structure. It is also composed, for the
encoder phase, of the 17 first layers of the VGG16 network,
with the ImageNet weights.

After 25 epochs and without data augmentation, the model
presented in this paper has been capable of predicted the three
retinal layers, with a global Dice coefficient of 0.685 and IoU
of 0.529. Recall, precision and accuracy have also been com-
puted and are equal to respectively 0.686, 0.685 and 0.996.
The model has still a lot of difficulties when dealing with low
contrast and illuminations. However, a lot of aspects to work
on has been found to improve the performance of the method,
with among others, the use of data augmentation, as well as
pre and post processing operations.
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