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Abstract — The detection of Obstructive Sleep Apnea (OSA) during sleep 
is a simple and well-established technique; however, its detection during 
wakefulness is challenging. In this paper, we propose a deep learning model 
for the detection of OSA using only the tracheal breathing sounds spectrum 
as input. We employed our team’s previous dataset consisting of 109 sub-
jects as non or mild-OSA with apnea/hypopnea index (AHI) < 15 and 90 
subjects as OSA with AHI ≥ 15. All study subjects were referred to overnight 
polysomnography (PSG) to determine their AHI values. Tracheal breathing 
sounds were recorded in the supine position before proceeding to PSG while 
awake. The recording protocol was to have 5 deep breaths first through the 
mouth and then 5 deep breaths through the nose. Data were normalized and 
segmented into inspiratory/expiratory breathing phases; their power spectra 
were then calculated and fed to a deep learning model consisting of 71 lay-
ers. The results of 10 K-fold show that the proposed deep learning model 
achieved an accuracy of 74.9%, sensitivity of 76.1%, and specificity of 
73.3%. Although these results are not as high as the previously reported anal-
yses, they can be improved significantly by combining with anthropometric 
parameters and subgrouping subjects based on their age, weight, etc. This 
work aimed to show the potential of deep learning on this dataset despite the 
limited sample size. The results are encouraging to continue and improve the 
algorithm.  
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I. INTRODUCTION  

A frequent syndrome known as obstructive sleep apnea 
(OSA) disorder is defined by recurrent episodes of the whole 
(apnea) or partial (hypopnea) pharyngeal collapse while 
sleeping. The affected people's quality of life may suffer sig-
nificantly as a result of OSA [1]. The risks of developing 
heart disease, high blood pressure, stroke, depression, diabe-
tes, headaches, and traffic accidents are among many associ-
ated effects of OSA  [2].  

OSA is also known to increase the risk of preoperative 
morbidity and/or postoperative mortality [ref]; thus, identify-
ing individuals with OSA before a surgery that requires gen-
eral anesthesia would lower the post-operative mortality risks 
[3]. 

The apnea/hypopnea events index (AHI) per hour is used 
to gauge the severity of sleep apnea. Polysomnography 
(PSG) is the gold standard for diagnosing OSA. However, the 
expensive nature of PSG due to its long procedure and need 
for trained technicians, lack of sleep labs in small towns, etc., 
there is typically a large waiting list for PSG assessments [4].  

The STOP-BANG questionnaire is one of the various sub-
jective OSA diagnosis/screening instruments that doctors 

employ for quick screening of OSA when there is no possi-
bility of performing PSG overnight [5]. However, its speci-
ficity is very low (10%). As a result, such subjective screen-
ing is not reliable for quick decision-making.  

Thus, there is a great need for an improved method of di-
agnosing and screening OSA individuals during wakefulness 
as a fast and robust screening tool. Such an approach will aid 
in reducing the need for PSG and will significantly help with 
decision-making prior to full anesthesia in regard to potential 
complications due to OSA in a patient  [5]. 

To screen for OSA during wakefulness, several research 
teams around the world have investigated objective alterna-
tives to current procedures by using tracheal breathing sound 
analysis recorded while individuals were awake [6]–[10]  and 
also using voice analysis [11], [12] with promising results. 

A major shortcoming of the previous research on this topic 
is the dependency of the algorithms on pre-processing and 
feature selection; the automated feature extraction from the 
sound data using deep learning models was not explored [13].  

Deep-learning techniques typically need large samples for 
learning. In this work, despite the limited sample size, our 
main objective was to investigate the potential of deep learn-
ing in extracting characteristic features sensitive to AHI with-
out the need to know the type of extracted respiratory phase 
(either inspiration or expiration) and lengthy pre-processing.  

II. METHODOLOGY 

A. Dataset 
Data were adopted from our team’s previous work [6]. 

Each individual’s tracheal breathing sounds were recorded 
by a microphone positioned at the suprasternal notch of the 
trachea for 5 complete cycles of deep breathing through the 
nose with the mouth closed and then another 5 breaths 
through the mouth while wearing a nasal clip using.  

The recording was made while the subject was in a supine 
position and awake. In this study and like our previous works 
the Data (n=199) were grouped as mild/non-OSA (n=109, 
AHI< 15) and OSA (n=90, AHI ≥ 15) [6]. Table 1 displays 
the total number of subjects and the total number of breathing 
phases (both inspiration and expiration) for each class for the 
dataset used in this study. 
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Table 1 Dataset Distribution  

Class AHI Number of Subjects Total Breathing Phases 
non-OSA AHI< 15 109 1840 

OSA AHI ≥ 15 90 1496 

B. Preprocessing and Power Spectrum 
A Butterworth band-pass filter of order 4 with a cutoff fre-

quency of 75- 3000 Hz was first used to filter out each breath-
ing sound phase independently in order to cancel out the im-
pacts of different interferences such as heartbeats, 
background noise, etc.  [7]. Second, in order to eliminate the 
impact of plausible airflow fluctuation between breathing cy-
cles, each filtered signal was normalized by its variance en-
velope using a smoothed copy by applying a Moving Aver-
age window with a size of 64 samples sequence, then by its 
standard deviation (energy). After that, a 50% duration 
around each breathing phase's maximum was chosen for fur-
ther analysis using the logarithm of the variance of the phase 
signals, representing the respiratory flow [7]. This duration 
roughly equates to the upper 40% of each breathing phase's 
respiratory airflow, where the signal is considered stationary 
within the breathing sound signal. The power spectrum den-
sity (PSD) for all middle regions of the signal was computed 
using the welch method with 25 ms length (256 samples win-
dow size), 50% overlapping between adjacent windows [7]. 
These preprocessing techniques are the same techniques used 
in our team’s previously published works using machine 
learning methods. 
C. Deep Learning Model 

Deep learning is a recently developed technique in the ar-
tificial intelligence field, which is emerged as a response to 
the increased number of available and recorded large datasets 
[14]. Deep learning models can be distinguished and defined 
based on their unique design and development of the set of 
layers, usually called architecture. Such an architecture con-
sists of a set of consecutive layers to process the model input 
and get the output [15]. This paper's proposed deep learning 
model is based on a combination of Convolutional Neural 
Network (CNN) with Long Short-Term Memory (LSTM). 

 The model consists of 71 layers where the input of the 
model is the 1D power spectrum of the breathing phase. Then 
the CNN part of the model will extract the deep features from 
the input data, the layers are the convolutional and the max 
pooling layers. The model takes the maximum and the aver-
age power spectrum by passing it through max pooling and 
average pooling layers, respectively. Then, both variables 
over the frequency band between 1 and 3700 Hz are passed 
through three stacked residual blocks to efficiently extract 
features. The output features are then passed through a series 
of fully connected and scaling layers to make the model 
“structure agnostic” about the input. Moreover, the LSTM 

part will use the input data characteristics as frequency-do-
main-based features to learn to extract the most significant 
part of the frequency data. Using the combination of two 
models allows shallower models with fewer parameters to be 
developed, resulting in better performance. Figure 1 shows 
the developed models and Table 2 shows the layer details. 

 
Fig. 1 The proposed deep learning model architecture. 

III. RESULTS 

The deep learning model in this work was created by com-
bining the CNN and LSTM models. All of the trials were car-
ried out using a desktop computer with an Intel Core i7-
12700H/2.3 GHz CPU, 32 GB of RAM, a 1 TB hard drive 
(HDD), and a 16 GB Nvidia GeForce RTX 3080 Ti GPU.  

Our proposed model was tested using the 10-Kfold meth-
odology, and one of the nine training folds was employed as 
validation during the cross-validation procedure; for each 
fold, the training was done using the SGDM optimizer with 
a cross-entropy loss function, initial learning rate of 0.001, 
and mini-batch size of 25. These hyperparameters are se-
lected using trial and error. Since there is a high correlation 
between breathing sounds of ins/exp phases of the same sub-
ject, the cross-validation classification process in this re-
search was done based on each subject; where all power spec-
trum data related to the same subject’s breathing phases are 
either in the training set, validation set, or testing set.  

A two-step classification using the deep learning model 
was used to detect OSA. In the first step, called “phase-
based”, the deep learning model was used to classify each 
breathing phase (either inspiration or expiration) into non-
OSA or OSA groups. The outcomes of this step are repre-
sentative of the ability of deep learning to detect OSA using 
phases regardless of knowing if they are inspiratory or expir-
atory phases. Figure 2 shows the confusion matrix and the 
ROC for this step. 

 In the second step, called “subject-based” detection, a fi-
nal decision for each subject is generated by finding the most 
frequent class using a majority voting classifications tech-
nique among all breathing phase related to the same subject  
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found in the first step. The outcomes of this step are repre-
sentative of the ability of the proposed deep learning model 
to screen for OSA subjects. Figure 3 shows the confusion ma-
trix and the ROC for the second step. 

Table 2 The proposed architecture layer details. 
# Name Parameters # Name Parameters 
1 Input Length: 3700 36 res1conv1_11 Filter: 8 *3,3 

Stride: 1 
2 maxpool Pool Size: 5,5 

Stride: 1  
37 group-

normres11 
Channels: 8 

4 res1conv
1_21 

Filter: 8*8, 8 
Stride: 1  

39 res1conv2_11 Filter: 8* 3,3 
Stride: 1  

5 group-
normres
21 

 40 res1conv3_11 Filter: 8*3,3  
Stride: 1  

7 res1conv
2_21 

Filter: 8*8, 8 
Stride: 1  

43 res2conv1_11 Filter: 8*3,3 
Stride: 1 

8 res1conv
3_21 

Filter: 8* 8, 8 
Stride: 1  

44 group-
normres12 

Channels: 8 

11 res2conv
1_21 

Filter: 8* 8, 8 
Stride: 1  

46 res2conv2_11 Filter: 8*3,3 
Stride: 1  

12 group-
normres
22 

Channels: 8 47 res2conv3_11 Filter: 8*3,3 8 
Stride: 1  

14 res2conv
2_21 

Filter: 8*8, 8 
Stride: 1  

50 res3conv1_11 Filter: 8*3,3 
Stride: 1  

15 res2conv
3_21 

Filter: 8*8, 8 
Stride: 1  

51 group-
normres13 

Channels: 8 

18 res3conv
1_21 

Filter: 8*8, 8 
Stride: 1  

53 res3conv2_11 Filter: 8*3,3 
Stride: 1  

19 group-
normres
23 

Channels: 8 55 fcatn3_1 Output: 512 

21 res3conv
2_21 

Filter: 8*8, 8 
Stride: 1  

57 fcatn2_1 Output: 512 

23 fcatn3 Output: 512 59 fcatn1_1 Output: 512 
25 fcatn2 Output: 512 68 bilstm1 Num Hidden 

Units: 512 
27 fcatn1 Output: 512 69 fc2 Output: 2 
34 avg-

pool2d 
PoolSize: 5  5 
Stride: 1  

   

 
(A)                                (B) 

Fig. 2 The output of Phases-based training; A) Confusion 
matrix, B) ROC. 

The performance metrics of both approaches (phase and 
subject-based) are shown in Table 3. These parameters are 
calculated based on the confusion matrix and ROC. 

 
         (A)                                          (B) 

Fig. 3 The output of Subject-based training; A) Confusion 
matrix, B) ROC. 

Table 3 Performance of the Proposed Methodology.  

 Accuracy Sensitivity Specificity Precision AUC 
Phase-Based 71.55 69.51 74.06 76.72 0.7721 

Subject-Based 74.87 76.15 73.33 77.57 0.8047 

IV. DISCUSSION 

Employing tracheal breathing sounds in order to detect 
OSA during sleep is easy and well-established. However, us-
ing breathing sounds to detect OSA during wakefulness is 
very challenging as OSA individuals do not exhibit any 
breathing symptoms while awake [16]. While there have 
been research studies to use tracheal breathing sounds for 
screening OSA during [6]–[8], [17], this research presents the 
first attempt to apply deep-learning models to the tracheal 
breathing sounds recorded during wakefulness for screening 
OSA.  

Out of the two classifications proposed in this study 
(phase-base and subject-base), the accuracy of the phase-
based classification was found to be low (~71%). This is due 
to the shallow deep learning model, where the development 
of deep models requires more time for optimization and ab-
lation studies for the effect of adding any new blocks such as 
attention. Moreover, the outcomes of this classification were 
fed to a majority vote classifier to have a subject-based clas-
sification based on the class of the majority of the phases of 
a subject; thus, the low accuracy of the phase classicization 
projects into the subsequent subject-base classification alt-
hough by majority voting of the phases’ class for each subject 
the overall accuracy is increased to about 75% (Table 3). 

Comparing the performance values of the proposed deep 
learning model with these previous works that used the same 
dataset [6], [7], [17] shows that the proposed methodology 
has lower performance, and still needs more development 
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and enhancement over a large dataset to increase its overall 
performance. At the same time, the results are encouraging 
given the limited sample size. Table 4 shows a comparison 
between the proposed work and previous similar studies.  

Table 4 A Comparison Between Proposed Work and Previous Works.  

Ref AHI Threshold Accuracy Sensitivity Specificity 

[7] AHI ≤ 5  AHI 
≥10 83.92 82.61 85.22 

[13] AHI <15 & 
AHI ≥15 

81.4 80.9 82.1 
Phase-Based 71.55 69.51 74.06 

Subject-Based 74.87 76.15 73.33 
 
Furthermore, more experiments are required to improve 

the proposed model's performance and stability. This could 
include but is not limited to using different initialization tech-
niques, hyperparameters fine-tuning, employing a larger da-
taset, and combining the extracted deep features with anthro-
pometric features as input to other classifiers, as well as 
subgrouping subjects based on their age, weight, etc. 

V. CONCLUSION  
This paper presents the outcomes of a deep learning-based 

detection of OSA using the breathing sounds power spectra, 
recorded during wakefulness, as input. While the accuracy of 
the deep-learning model for screening OSA is lower than the 
previous methods using the same dataset, overall, the pro-
posed method has the advantage of removing the need for 
knowing the respiratory phase as either inspiration or expira-
tion. Given the limited sample size used in this study and yet 
achieving reasonable accuracy, the results encourage investi-
gating the use of deep learning in the detection of OSA; we 
anticipate its accuracy to increase in a larger dataset. 
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