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Abstract— Lung sounds contain important clinical information
which can be used for identifying respiratory and/or lung disorders.
Manual identification of respiratory events is time-consuming and
prone to subjective errors. While several automatic respiratory event
classification techniques have been proposed previously, they are
mostly focused on the identification of respiratory sounds in the adult
population. Though, this is challenging in youth as lung is developing
till the age of 20 years old which affects the parameters of respiratory
sounds. In this research, our goal is to develop techniques for respira-
tory sound classification in youth using the SPRSound dataset, which
includes recordings of individuals from 0-18 years old. The objectives
include binary and multi-class classification of respiratory events (ob-
jective 1) and recordings (objective 2). For objective 1, we extracted
purified respiratory features using a convolutional neural network
(CNN) as well as frequency and time domain features, statistical fea-
tures, and patient demographics, while for objective 2, a mixed model
of long short-term memory (LSTM) network and a gradient boosting
classifier with a novel voting scheme is developed. The features which
were significantly associated with the different respiratory sounds
were used to train machine-learning models for classification pur-
poses. We evaluated the models’ performance based on sensitivity,
specificity, an average of sensitivity and specificity scores (AS), and
the F1-score. The final performance score is defined as the average of
the AS and F1-score. Our proposed framework reached 0.91±0.03
and 0.82±0.03 in binary and 7-class event classification, respectively.
Also, the developed model reached 0.74±0.02 and 0.55±0.03 in 3-class
and 5-class recording sound classification.

Keywords— Respiratory Sounds, Model Fusion, Deep Learning,
Signal Processing, Paediatric.

I. INTRODUCTION

Despite having many superior lung imaging diagnosing techniques,
lung auscultation is still the most common, accessible, and af-
fordable way for initial examination of individual’s respiratory
sounds for diagnosis and detection of abnormal breathings and
their associated disorders [1, 2]. Abnormal breathing sounds in-
clude a mixture of normal and adventitious breathing events such
as wheeze, rhonchus, stridor, fine and coarse crackles. Respiratory
event sounds contain distinctive features in the temporal (happens
at a certain breathing phase and/or for a specific duration of time)
and frequency (happens in particular frequency ranges) domains,
which can be used to distinguish normal vs. adventitious events:
Wheeze is characterized by musical and high-pitched sounds with
fundamental frequency of >500 Hz; Rhonchus is a variant of
the wheeze with lower pitch, typically near 150 Hz; Stridor is a
high-pitched, musical sound with the fundamental frequency of
approximately 500Hz; Fine crackles are brief, discontinuous, pop-
ping high-pitched lung sounds with typical frequency of 650Hz and
duration of 5ms; Coarse crackles are discontinuous, brief, popping

lung sounds with typical frequency of 350Hz and duration of 15ms.
With the advancement of technology and data analysis

techniques, breathing sounds can be recorded reliably (with digital
stethoscope) and automatically analyzed for identifying breathing
disorders using machine learning and artificial intelligence
techniques. For example, automatic breathing sound analysis have
been used for diagnosing sleep apnea, asthma, and COPD [1–3].
For instance, some teams used tracheal breathing sounds to
automatically diagnose obstructive sleep apnea during sleep or
screen it during wakefulness [4].

While automatic identification of breathing sounds can
improve diagnosis, previous studies are mostly focused on adult
patients [5–7]. Automatic identification of breathing sounds in
youth is challenging mainly because human respiratory system
is still developing [8]. Human lung gets mature around the age of
20 years old. The number of lung air sacs increases rapidly within
the first three years of individuals’ lives; then the lung becomes
the same as the adult’s lung except in size [9,10]. From 3 years
old to 10 years old, the size of the lung increases with height.
Moreover, sex, age, height, weight, and puberty have different
impacts on the size of the lung and lung function and accordingly
breathing sounds. For instance, between the ages of 3-10 years
old, females show greater forced airflows per unit of lung volume
than males [9, 11]. Therefore, these confounding factors should
be considered while analyzing breathing sounds for diagnosis in
individuals between 0 – 18 years old.

As a result, in this research, we aim to develop methods for
automatic classification of sound recordings and breathing sounds
in the young population. To achieve this goal, we aim to address
two objectives:

1. To develop a technique for automatic identification of
breathing events in the following settings
• Binary classification: normal vs. adventitious
• Multiclass classification: normal, rhonchus, wheeze, stri-

dor, and coarse crackles, fine crackles, wheeze & crackles
2. To develop a technique for automatic labelling of signal

recordings in the following settings:
• Ternary classification: normal, adventitious, poor quality
• Multiclass classification: normal, continuous adventitious

sound (CAS), discrete adventitious sound (DAS), mixture
of CAS and DAS, or poor quality

II. METHODS

A. Dataset

The dataset used in this research was initially developed for Bio-
CAS 2022 Grand Challenge on Respiratory Sound Classifica-
tion [12] and it was later extended and published as SPRSound
dataset [13,14]. Lung sounds are collected at Shanghai Children’s
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Medical Center from 251 participants (123 females) ranging from
1 month to 18 years old. Each participant has multiple recordings
from different recording locations, such as left posterior, left lateral,
right posterior, and right lateral. Each recording is accompanied
by an annotation file which provides information regarding the
label and duration of recording and respiratory events that oc-
cur during recording. Recording labels indicate the status of the
whole recording, such as normal, CAS, DAS, CAS and DAS, and
poor quality, while event labels reflect respiratory events (normal,
rhonchus, wheeze, stridor, coarse crackle, fine crackle, and wheeze
and crackle). The total number of recordings is 1949 and recordings
are converted to digital .wav files using 8000Hz sampling rate.

B. Pre-processing

Since lung auscultation recordings are low-frequency content, they
can interfere with cardiac sound vibrations [15]. Therefore, in this
research, a 6th-order Butterworth filter with two different pass-
bands (i.e., 75-850Hz and 75-1500Hz) was applied to raw record-
ings. The frequency range of 75-850Hz was used for the event
detection task, while the frequency range of 75-1500Hz was used
to capture parts of unwanted sources to make the model capable
of classifying poor-quality recordings [16]. To avoid undesirable
complications due to the nonlinear phase of the filter, the forward
and backward method was used to keep the filter zero phase.

C. Objective 1: Respiratory event classification

To address objective 1, we first analyzed breathing events to
extract the following event-related features: 1) time-frequency
purified features using a 4-layer binary CNN model, which is
trained on Mel spectrograms of breathing events, 2) statistical
features, e.g. mean, variance, skewness, and kurtosis of signal, 3)
nonlinear features, e.g. Shannon entropy and histogram logarithm,
4) spectral features, e.g. power of different frequency ranges
(70-150Hz, 150-300Hz, 300-400Hz, 400-500Hz, 500-600Hz,
600-700Hz, 700-850Hz), 13 Mel frequency cepstral coefficients
(MFCC) [17], and its 1st and 2nd derivatives, 5) temporal features,
such as zero-crossing rate, 6) tempogram-related features such as
autocorrelation, 7) demographic-related features such as age, sex,
and 8) recording related features such as the location of recordings.
The CNN model was trained as a classifier using a batch size of
32 samples and the Adam optimizer with a learning rate of 1E-4.

The total number of extracted features was 109. The extracted
features were then fed to a feature selection pipeline (Python
Featurewiz [18]) to remove zero variance and highly correlated
features, leaving only those features which were strongly correlated
with breathing event types. The selected features were then
fed to binary (Sub-Objective 1.1) and multiple (Sub-Objective
1.2) classifiers including extreme gradient boosting (XGBoost),
Random Forest, Logistic Regression, and Gradient Boosting
models for comparing the classification performance and selecting
the optimal classification model. The pipeline is shown in Fig. 1.
To account for a highly imbalanced dataset, we used a dynamic
loss function for our CNN model in which the weight of each
class is computed dynamically based on the number of samples
per class and the class with lower samples is penalized more for
misclassification. Moreover, we trained the Featurewiz based on a
balanced dataset in which we randomly selected the same number
of normal vs. adventitious breathing events.

Fig. 1: Proposed pipeline for event classification (Zoom-in for more details).

D. Objective 2: Recording classification

To address objective 2, a new model based on long short-term
memory (LSTM) neural network was developed. The training
specifications for the proposed LSTM are similar to those of the
CNN model in objective 1. In this objective, the inputs are record-
ing samples (instead of event samples) and the outputs (labels) are
recording labels. Recording labels can be either a three-state label
(normal, adventitious, poor quality for Sub-Objective 2.1) or five-
class output (normal, CAS, DAS, CAS and DAS, poor quality for
Sub-Objective 2.2). As shown in Fig. 2, after zero-padding of the
recordings at the beginning and end of the signal, the recording is
segmented using a rectangular window with a length of 50ms and
an overlap of 25ms to capture the temporal variation of the shortest
event in the recording. From each segment, a set of features similar
to those of objective 1 are extracted. In this objective, the overall
model is based on two submodels. The first submodel uses LSTM
to classify the recordings and generate each class probability P1i (i
can be either 1,2,3 or 1,2,3,4,5 depending on the number of output
classes). The second submodel merges all the segments using the
following equation. µ( fi) demonstrates the average of feature fi
through all the segments of the recording and σ( fi) corresponds to
the standard deviation of feature fi over all segments of a recording.

fi=
µ( fi)
σ( fi)

(1)

After merging the features, correlation and variance analyses
(Featurewiz) are used to select the best set of features. An XGBoost
model is then used to extract the class probabilities P2i (i can be
either 1,2,3 or 1,2,3,4,5). A voting scheme is developed for fusing
two models using different (coefficients of the first submodel) and
(coefficients of the second submodel). αi and βi values are ranged
from 0 to 10 and calculated using a single-parameter grid search
based on the results of classifying the validation set. The coeffi-
cients are then averaged throughout different runs to increase the
model generalizability. Finally, the class with the highest score is
selected as the result of classification (either ternary or five-class).

Fig. 2: Proposed pipeline for record classification (Zoom-in for more details).

E. Model Evaluation

We trained, validated, and tested our classification models using
70%, 15%, and 15% of the data, respectively. We evaluated the
performance of our models based on the average and standard
deviation of the overall score and performance measures using a
5-fold cross-validation technique in objective 1 and over 5 different
runs in objective 2. The performance measures and overall score
of the model are defined as:
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• SP= (#correctly predicted adventitious events/records)

(#total adventitious events/records)

• SE= (#correctly predicted normal events/records)
(#total normal events/records)

• AS= SE+SP
2

• HS= 2∗SE∗SP
SE+SP

• Score= AS+HS
2

III. RESULTS

A. Binary Event Classification (Sub-Objective 1.1)

The results of the binary event classification models are presented
in Table 1 and Fig. 3-a. The results indicated that CNN had the
highest overall score. Though, the score was not significantly
different from XGBoost, gradient boosting, logistic regression and
random forest classification models which include both CNN and
manually extracted features. Moreover, our results showed that the
classical models infused with CNN features performed better in
classifying adventitious events. Finally, the features extracted from
CNN noticeably improved the performance of classical machine
learning models.

B. Multiple Event Classification (Sub-Objective 1.2)

The results of the multiple event classification models are presented
in Table 1 and Fig. 3-b. The results indicated that XGBoost
infused with CNN features had the highest overall score. Though,
the score was not considerably different from gradient boosting,
logistic regression and random forest classification models with
infused CNN features. Moreover, our results showed that extracted
features from CNN significantly increased the performance of our
machine learning models. Furthermore, based on our results, the
developed classifiers performed better in classifying non-normal
events than normal events. This is mainly because the Mel
spectrum of the non-normal events are more localized due to their
specific frequency ranges and physiological characteristics.

(a) Binary

(b) 7-class

Fig. 3: Performance of proposed model for objective 1, where
w and n indicate the model with and without the CNN features, respectively.

C. Ternary Record Classification (Sub-Objective 2.1)

Using the min-max feature normalization technique (which maps
the minimum to 0 and maximum to 1) for the second submodel,
the results of ternary classification are acquired and shown in Table
1. To overcome the challenge of an imbalanced dataset, the loss
function is normalized using class weights which are reciprocal
to the number of samples in each class.

D. Multiple Record Classification (Sub-Objective 2.2)

For this task, the min-max feature normalization technique was
used to encounter the challenge of different scales and units among
the features. The results of this subtask are shown in and Table 1.
It can be noted that the accuracy of this model is relatively high for
a 5-class classification task. However, the sensitivity is low which
means that the model was not capable of detecting adventitious
recordings well. This phenomenon happened mainly because of
the extremely low number of samples in each class.

As can be seen from the figure, the 5-class classification
generally resulted in poorer sensitivity or SE in comparison to the
ternary model which is due to a high imbalanced dataset that could
not be completely addressed even if in presence of the weighted
classification technique.

E. Overall performance

To align with the BioCAS Grand Challenge organizers scoring
policy the following metric is used to estimate the overall
performance of the proposed model.

Total Score=0.2∗Score1−1+0.3∗Score1−2+0.2∗Score2−1+0.3∗Score2−2

(2)

Table 1: Overall performance of the developed framework

Sub-Objective Metrics
SP SE AS HS Score

1.1 0.91±0.03 0.91±0.04 0.91±0.03 0.91±0.03 0.91±0.03
1.2 0.69±0.04 0.97±0.01 0.83±0.02 0.81±0.03 0.82±0.03
2.1 0.78±0.03 0.69±0.02 0.74±0.02 0.74±0.02 0.74±0.02
2.2 0.76±0.07 0.4±0.04 0.58±0.03 0.52±0.03 0.55±0.03

Table 2: Comparison of the model with the top-5 teams

Method Metrics
Score1−1 Score1−2 Score2−1 Score2−2 Total Score

1st Team [19] 0.89 0.82 0.72 0.53 0.73
2nd Team [20] 0.82 0.74 0.71 0.53 0.67
3rd Team [21] 0.85 0.75 0.70 0.53 0.69
4th Team [22] 0.90 0.80 0.72 0.45 0.70
5th Team [23] 0.84 0.73 0.67 0.52 0.68

Proposed model 0.91 0.82 0.74 0.55 0.74
1 The original ranking included runtime as a bonus point in the total score (which

is ignored in this table) [12].

Using the average of each subtask’s performance to calculate
the final score, the total score of 0.7387 is achievable by applying
the proposed framework of this research. Also, the performance
of our proposed model is compared with the top-5 teams of the
competition in Table 2, and as it can be conceivable the suggested
model outperformed the others.
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IV. DISCUSSION

Our results indicated that features extracted from the CNN model
significantly improved the performance of our classical machine
learning techniques. This is mainly due to the fact that deep
learning models can introduce data-driven features which might
be missed when only using manual feature extraction.

Additionally, in the second objective, using a new voting
scheme to merge the deep LSTM model with XGBoost helped
us achieve better and more robust results in comparison to using
each one separately. The fusion was applied mainly because the
submodels performed contrastingly. For example, the LSTM-based
submodel focused on normal and poor quality recordings, while
the XGBoost-based was aimed to extract and characterize
adventitious recordings.

Furthermore, the problem of imbalanced data is the inevitable
state-of-the-art challenge of artificial intelligence-based methods.
In this study, the number of normal events was significantly higher
than the adventitious events. Also, among adventitious events,
the dataset is unbalanced. Selecting the features based on this
unbalanced dataset will significantly affect the performance of the
final model. To overcome this challenge, we trained the neural
networks used in this study utilizing the dynamic loss function.
Moreover, we selected the final set of features based on a balanced
dataset including the same number of normal and total adventitious
events. In spite of all the techniques we employed to penalize the
classes with fewer samples more intensely, the problem still needs
to be investigated in much deeper detail in future works.

Another limitation of this research was that a considerable
portion of events did not include the full breathing cycle the
information of which, if present, could improve the performance of
the proposed model. Also, in our auditory inspection, we noticed
that some of the recorded signals included noise which also affects
the performance of the model. Notwithstanding all the challenges,
our proposed method could reach the total score of 0.74 which
is superior to previous models [13,19–23].

V. CONCLUSION
In this paper, multiple hybrid methods have been proposed to
accomplish IEEE BioCAS Grand Challenge on Respiratory Sound
Classification. The dataset has been prepared with different respi-
ratory sound recordings from the lung in the pediatric population.
To the best of our knowledge, this dataset is the biggest publicly
available dataset on children which can support the applicability
of the developed method to be used in this population. In contrast
to the conventional methods which are either based on deep neural
networks or manual feature extraction and analysis, our proposed
framework integrates both methods to include not only the phys-
iologically interpretable characteristics of the signals but also the
data-driven features which are being missed in manual analyses. In
the future, we will focus on preprocessing procedures to eliminate
negatively impacting sources and try to tackle the imbalance data
challenge using newer loss functions and other time-frequency
representations such as wavelet transformation and S-transform.
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