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Abstract— Objective: The ability to accurately identify con-

cussions and assess recovery is essential to protect individuals 

from experiencing negative consequences regarding premature 

return-to-play. To date, there is no “gold” standard of concus-

sion diagnosis nor method to track recovery. Instead, clinicians 

rely on symptom checklists and neuropsychiatric tests to inform 

clinical decisions. Balance is one of several commonly assessed 

motor capabilities to screen for concussion, including sensor-

based assessments of balance using normative data as baseline 

to track changes. However, the timing and frequency of balance 

measurements to screen for impairment and monitor recovery 

remains underexamined. This study examines the utility of a 

rapid (5-min) sensor-based balance measurement on a habitual 

(i.e., pre/post-practice) schedule to screen for concussions. The 

primary objective of the study is to determine the factors that 

affect baseline sway measures. Factors considered include indi-

vidual differences, assessment timing (pre/post activity), bal-

ance condition, and longitudinal changes. Additionally, this 

study examines whether normative data gathered from a large 

sample of healthy controls are reflective of individual balance 

profiles. Design: A pilot study using a repeated observation de-

sign. Methods: Five varsity hockey players (3 males, 2 females) 

were recruited for a 9-week study. Each athlete was tested prior 

to and after practice using an IMU, performing a modified Bal-

ance Error Scoring System (BESS) test. Results: Sampled data 

used to estimate individual beta distributions indicates signifi-

cant individual differences in balance behaviour across a range 

of metrics. Additionally, preliminary results show that norma-

tive values drawn from a large cross-sectional sample are not 

reflective of individual balance profiles drawn from our longi-

tudinal sample. Conclusions: This study supports the need for 

individualized baseline profiles for balance in order to achieve 

higher accuracy and sensitivity in concussion detection. Serial, 

habitual testing is recommended to enable concussion detection 

from objective measures with higher accuracy and sensitivity 

during sideline assessments. 
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I. INTRODUCTION  

Objectively determining the occurrence of concussion, un-

derstanding the possible consequences thereafter, and evalu-

ating recovery from the injury are top priorities for concus-

sion research. This is a difficult task for medical 

professionals due to the lack of a gold-standard tests and re-

liance on subjective symptom scores. Providers are left with 

limited data upon which to make decisions about diagnoses, 

and return to play [1]. Gathering timely data to inform 

whether a person can safely return to the game can have a 

major impact on recovery: athletes continuing to play after a 

suspected concussion can have prolonged recovery compared 

to those immediately removed [2,3]. Therefore, providing 

clinicians with sensitive and objective tools that can deter-

mine if someone has suffered a concussion, and monitor re-

covery following the injury, is essential for the health and 

safety of individual athletes.  

Current screening, diagnosis, and assessment of sport re-

lated concussion is conducted using one of 3 approaches: 1) 

monitoring symptoms and their resolution, 2) comparing pa-

tient performance on specific tests to normative data, and 3) 

comparing patient performance to a pre-injury “baseline”. 

The most common approach is on self- and observer-based 

symptom monitoring. Considering symptoms are highly sub-

jective and often influenced by circumstances, symptom self-

report has been plagued by inconsistencies [4]. An alternative 

is to apply a nomothetic approach by using normative values 

based on sampling comparable populations. However, apply-

ing normative values to individuals also has drawbacks, high-

lighted by Capitani [5]. For example, is it reasonable to com-

pare a 29- and a 21-year-old because they are in the 20-29 

age range? Would it be more practical to compare a 29- to a 

31-year-old? To account for individual factors, many clinics 

run a model that includes individual baselines, popularized 

by using computerized software, such as ImPACT [6]. Cost 

and feasibility of widespread adoption of individual baselines 

remains a challenge [7], especially in repeated testing [1]. 

A more economical approach is to use readily available 

tools such as the SCAT-5 (Sport Concussion Assessment 

Tool v5). Although not the intended use (as stated in the 

SCAT-5 manual), there is some evidence to suggest that such 

a tool may warrant use for baseline testing [8]. However, sub-

jectivity in self- and observer- based reporting remain con-

cerning. An amalgamation of assessment domains, such as 

balance (mBESS; modified Balance Error Scoring System), 

cognition (SAC; Standardised Assessment of Concussion), 

symptoms checklists, and other questions (e.g., the Glascow 

Coma Scale), the SCAT-5 is used on the sidelines to indicate 
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whether further medical attention is warranted. Accurate ad-

ministration of these tools (e.g., BESS) requires trained indi-

viduals to make complex judgements. Decision-makers need 

knowledge and objective tools to make informed decisions, 

as opposed to sending athletes to the emergency room with 

every hit that occurs. 

Senor-based technology may provide the means to im-

prove concussion assessment, including mounting evidence 

supporting the utility of balance assessment to evaluate pa-

tients with concussion [1,9]. In a cross-sectional study, King 

et al. utilized wearable sensors for assessment of sway met-

rics capable of distinguishing impaired balance due to con-

cussion [10].  

The present study proposes an alternative assessment par-

adigm utilizing sensor-based sway measurements to evaluate 

an athlete’s balance immediately prior to and following a 

sporting event. Assessing balance on a routine basis will per-

mit personalized comparisons in the event of a suspected in-

jury. The primary research question asks, “Can normative 

condition-specific sway ranges be used when screening for 

concussion?” The hypothesis of this pilot study was that ob-

jective, sensor-based testing of balance prior to (and follow-

ing) sport participation over a 9-week period will show sig-

nificant individual variations, indicating the need for 

individual specific sway baselines.  

II. METHODOLOGY 

A. Data Collection 

Five volunteers (3 males, 2 females; average age: 22.8 +/- 

3.7 years) from the men’s and women’s varsity hockey teams 

at the University of Waterloo with  no history of previous 

concussion, brain injury, or balance impairment were re-

cruited. Following pilot tests, 5 was chosen as a maximum 

feasible sample size for a researcher (DG) to conduct while 

minimizing the length of time required to sustain compliance. 

Following written informed consent, each participant re-

quired ~5 minutes per session. All procedures were approved 

by the University of Waterloo’s Office of Research Ethics. 

Based on the modified BESS (mBESS), participants stood 

with eyes closed on a firm surface in 3 conditions: i) double 

leg stance, ii) single leg stance on their non-dominant foot, 

and iii) tandem stance with their non-dominant foot at back, 

for twenty seconds in each position. Shimmer3 ExG sensors 

(Shimmer, Ireland), including 3D accelerometer, gyroscope, 

and magnetometer, were attached to the sternum to provide 

objective measures of postural sway.  

A researcher (DG) attended one practice per week for each 

of the men’s and women’s varsity hockey team. Testing was 

conducted immediately before and after practice, once per 

week for nine consecutive weeks. In total, 90 testing sessions 

were planned. Participants were tested in random order. Over 

the study period, 33-51 independent samples were obtained 

for each participant.  

B. Data Processing 

MATLAB (version 2020a, Mathworks Inc., Natick, USA) 

was used for data processing and analysis. 3D raw sensor data 

were transformed to obtain accelerations in the medial-lateral 

(ML), anterior-posterior (AP), and vertical (VT) directions.  

The data was then filtered using a 3rd order low-pass Butter-

worth filter with a cut-off frequency of 3.5 Hz. Drawing on  

King et al., the five most sensitive metrics for concussion 

sway assessment were selected, all of which were in the ML 

direction [10]: root mean square (RMS), total power, range 

of acceleration (RoA), path length (PL), and mean distance 

(MD). 

C. Hypothesis Testing 

A linear mixed effects model (LME) was fit to the data for 

hypothesis testing. Since the data is comprised of repeated 

measures from 5 participants, it exhibits non-independencies. 

The LME model controls the random variability between 

groups around the fixed effects, accounting for non-inde-

pendencies in the data. LME models also produce fairly un-

biased predictions when data points are missing completely 

at random (MCAR), which is the case for our dataset.  

The response variable in the model was the respective 

sway metric, with all five sway metrics modelled separately. 

The fixed effects were test condition, pre/post practice, week 

number, and  their two-way interactions. Random intercepts 

and slopes with participant as the grouping variable were in-

troduced. The data was initially log transformed, and normal-

ity of the response variable was inspected visually. Model fit 

statistics like the Akaike information criterion (AIC), Bayes-

ian information criterion (BIC), and adjusted R-squared were 

calculated to ensure optimal model selection. Homoscedas-

ticity and normality of the error terms, normality of random 

effects, as well as linearity of the relationship were assessed 

visually and considered acceptable. It is recommended that 

the random effects factor has a minimum of 5 groups [11]. 

While on the lower bound of the advised range, the dataset is 

acceptable for preliminary study. 

III. RESULTS  

Following model fitting, analysis of variance for LME 

models was performed. The p-values for the fixed effect 

terms are shown in Table 1 below to indicate significant 
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effects on the response, even if for a single participant or con-

dition. The condition variable showed a statistically signifi-

cant p-value for all five sway metrics. All other fixed effect 

terms, including their interaction terms, showed no signifi-

cant effect on the sway metrics performance. 

Table 1: p-values for the fixed effect terms of the LME model. * indicates 

p<0.05 

 RMS Power RoA PL MD  

Condition 0.001* 0.004* <0.001* 0.003* 0.003*  

Pre/Post 0.278 0.271 0.346 0.241 0.204  

Week 0.668 0.673 0.799 0.659 0.701  

Condition:Pre/Post 0.819 0.497 0.905 0.667 0.625  

Condition:Week 0.419 0.558 0.124 0.500 0.500  

Pre/Post:Week 0.168 0.111 0.583 0.094 0.090  

 

    Descriptive statistics are shown in Table 2, including RMS 

median and IQR range measures for all 5 participants, and 3 

conditions, for pre-practice sessions.   

Table 2: RMS median and IQR ranges (m/s2) grouped by the participants 

and conditions, for pre- practice session. 

 Condition 1 Condition 2 Condition 3  

1 1.06E-02 (4.04E-03) 2.87E-02 (1.34E-02) 2.36E-02 (3.07E-03)  

2 4.51E-02 (2.55E-02) 7.03E-02 (2.48E-02) 6.19E-02 (9.99E-03)  

3 9.40E-03 (3.39E-03) 4.67E-02 (4.13E-02) 3.31E-02 (1.88E-02)  

4 7.80E-03 (3.60E-03) 1.48E-02 (2.18E-02) 5.73E-02 (3.00E-02)  

5 6.83E-03 (9.73E-04) 1.16E-02 (6.78E-03) 1.95E-02 (4.88E-03)  

 

Including the participant random effects increased adjusted 

R2 value from 0.26 to 0.63, and lead to reduction in AIC from 

160 to 53. To formally test the significance of the random 

effects, LME models with and without the random intercept 

and slope were compared using theoretical likelihood ratio 

test. For all 5 metrics analyzed, theoretical likelihood ratio 

test p-values were p<0.001 indicating that the introduction of 

the random intercept and slope significantly improves the 

model fit. AIC values confirm significant differences in 

model fit. 

A. Building Individualized Balance Profiles 

    To model each participant’s individualized baseline bal-

ance profiles, a probability density function (PDF) was fit to 

their RMS data. The data for condition 1 was used and 

pre/post data was combined as our previous analysis showed 

no significant difference in performance for the variable. As 

such, a maximum of 18 datapoints were available for each 

participant. Bootstrap sampling using the means was then ap-

plied to obtain 50 samples per participant.  

    The goal was to fit a univariate, parametric, bounded PDF 

to the data for each athlete. The beta distribution was se-

lected, and goodness of fit was assessed using a Q-Q plot and 

comparison of cumulative distribution functions. As it can 

flexibly take on a range of shapes, the beta distribution was 

chosen to model individual differences. Using the maximum 

likelihood method, fitted PDFs for all participants were gen-

erated and plotted in Figure 1. The dashed black line and grey 

shaded area on the figure illustrate published normative data 

for the median and IQR range for the RMS ML values of 76 

athletes with no concussion [10]. As a side note, the sensor 

was placed on the lumbar spine (versus the sternum in the 

current study). Using the inverted pendulum theory, placing 

the sensor on the sternum should yield higher accelerations 

than the lumbar spine due to a longer moment arm. 

 

IV. DISCUSSION 

    Statistical analysis of the fixed effects in the model, as 

shown in Table 1, indicates the time of testing (i.e., pre vs 

post practice), and the week number do not play significant 

roles on the participant’s sway. The observed significance of 

test condition (i.e., double leg vs single-leg vs tandem) is al-

ready well known. Analysis of the random intercepts in the 

model indicated significantly different individual baselines, 

largely attributable to participant 2.  

Figure 1: Baseline balance profiles of the 5 participants. Dashed black line 

and grey shaded area on the figure illustrate published normative data for the 

median and IQR range for the RMS ML values of 76 athletes with no history 

of concussion.  
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    The constructed baseline profiles of the different partici-

pants (Figure 1) exhibit differences in the width, location, 

and shape of the individual distributions. Considering the dis-

tribution for Participant 2 (P2, yellow trace) does not overlap 

with normative ranges (black dashed line and shaded region), 

using normative baselines to determine impairment may be 

inappropriate.  

    Compared to published normative ranges [10], the 5 par-

ticipants in the current study demonstrated smaller RMS on 

average.  P2 demonstrated small sway magnitudes well be-

low the normative distribution, but very consistently across 9 

weeks of testing. If the normative range (shaded region in 

Figure 1) represents the healthy RMS range, a concussion re-

sulting in balance deficits in participants P2 and P3 is more 

likely go undetected due to their low RMS baselines. These 

findings suggest individual baselines are needed to account 

for heterogeneity, especially given how narrow the screening 

ranges are and the sensitivity required for reliable diagnosis.  

    One advantage of profiling sway as a PDF is estimating 

the probability of a measurement being within their individ-

ual unimpaired range. In other words, replacing hard Boolean 

(yes/no) decisions with soft clusters capable of outputting the 

probability of a participant being injured may be a more ef-

fective approach for objective concussion screening. How-

ever, this requires serial baseline data. A potential next step 

that extends from this idea is the utilization of Bayesian 

online learning wherein the distribution of the sway baseline 

profile is updated given new data points as data is collected 

serially over time. This would allow for an increasingly im-

proved representation of participant profiles over time as 

more data is collected. 

V. CONCLUSIONS 

    Individual heterogeneity in sway measures must be ac-

counted for in order to effectively detect concussion using 

objective balance tests. One way to account for individual 

differences is by performing habitual testing in a serial fash-

ion to build personalized balance baseline profiles. Such a 

method has the potential to reduce missed concussion diag-

noses, thereby reducing inappropriate return to play deci-

sions.  

CONFLICT OF INTEREST 

The authors declare that they have no conflict of interest. 

REFERENCES 

1. McCrory P, Meeuwisse W, Aubry M, et al. Consensus statement 

on concussion in sport: the 4th International Conference on Con-

cussion in Sport held in Zurich, November 2012. Br J Sports 
Med. 2013;47(5):250-258.  

2. Asken BM, McCrea MA, Clugston JR, Snyder AR, Houck ZM, 

Bauer RM. Playing through it: Delayed reporting and removal 
from athletic activity after concussion predicts prolonged recov-

ery. J Athl Train.-2016;51(4):329-335.-doi:10.4085/1062-6050-

51.5.02 
3. Elbin RJ, Sufrinko A, Schatz P, et al. Removal From Play After 

Concussion-and-Recovery-Time.-Pediatrics.-

2016;138(3):e20160910-e20160910.-doi:10.1542/peds.2016-
0910 

4. Chrisman S, Quitiquit C, Health FR-J of A, 2013. Qualitative 

study of barriers to concussive symptom reporting in high school 
athletics. Elsevier.  

5. Capitani E. Normative data and neuropsychological assessment. 

Common problems in clinical practice and-research.-Neuropsy-
chol-Rehabil. 1997;7(4):295-310. 

6. Schatz P. Long-term test-retest reliability of baseline cognitive 

assessments using ImPACT. Am J Sports Med.2010;38(1):47-
53. doi:10.1177/0363546509343805 

7. Kirkwood MW, Randolph C, Yeates KO. Returning pediatric ath-

letes to play after concussion: The evidence (or lack thereof) be-
hind baseline neuropsychological testing. Acta Paediatr Int J 

Paediatr.-2009;98(9):1409-1411.-doi:10.1111/j.1651-

2227.2009.01448.x 
8. Putukian M, Echemendia R, Dettwiler-Danspeckgruber A, et al. 

Prospective clinical assessment using sideline concussion assess-

ment tool-2 testing in the evaluation of sport-related concussion 
in college athletes. Clin J Sport Med.2015;25(1):36-42. 

doi:10.1097/JSM.0000000000000102 

9. Baker CS, Cinelli ME. Visuomotor deficits during locomotion in 
previously concussed athletes 30 or more days following return 

to-play.-Physiol-Rep.-2014;2(12):e12252. 
doi:10.14814/phy2.12252 

10. King, L. A., Mancini, M., Fino, P. C., Chesnutt, J., Swanson, C. 

W., Markwardt, S., & Chapman, J. C. (2017). Sensor-Based Bal-
ance Measures Outperform Modified Balance Error Scoring Sys-

tem in Identifying Acute Concussion. Annals of biomedical-en-

gineering, 45(9),-2135–2145.-https://doi.org/10.1007/s10439-
017-1856-y  

11. 11. Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, 

J., Fisher, D. N., Goodwin, C., Robinson, B. S., Hodgson, D. J., 
& Inger, R. (2018). A brief introduction to mixed effects model-

ling and multi-model inference in ecology. PeerJ, 6, e4794. 

https://doi.org/10.7717/peerj.4794

 

https://doi.org/10.1007/s10439-017-1856-y
https://doi.org/10.1007/s10439-017-1856-y

