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Abstract— We present “SonoAssist”, an open-source ac-

quisition software designed to facilitate the development of 

point-of-care ultrasound (POCUS) assistance systems by 

simplifying the data collection process. This software caters 

to research utilizing ultrasound images along with gaze data 

or probe movement measurements to tackle tasks like 

standard scan plane detection, anatomical landmark detec-

tion, and ultrasound probe guidance. Through SonoAssist’s 

simple interface, users can easily collect data from the fol-

lowing sensors: an ultrasound probe, an RGBD camera, an 

eye tracker, a screen recorder, and IMUs (Inertial Measure-

ment Unit). Furthermore, SonoAssist timestamps data as 

they are acquired with a single time reference, removing the 

need for additional synchronization steps. To document the 

software’s performance, we characterized the synchroniza-

tion between the ultrasound image and IMU data streams, 

the eye tracker accuracy, and the acquisition frequencies 

(ultrasound probe: 22 Hz, eye tracker: 87 Hz, external IMU: 

100 Hz, screen recorder: 13Hz). 
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ing, open source 

I. INTRODUCTION  

The advent of point-of-care ultrasound (POCUS) created 

a need for tools that make ultrasound imaging more acces-

sible to medical practitioners outside radiology departments. 

Indeed, recent research has investigated methods to assist 

new users of ultrasound by automating interpretation tasks 

like standard scan plane detection, scan plane classification, 

landmark detection, and volume reconstruction or providing 

some form of visual guidance during scanning. Several of 

these methods utilize information from sources other than 

the ultrasound images, like the sonographer's gaze 

[1,2,3,4,5] and the movements of the ultrasound probe [6, 

7]. Sonographer gaze data are useful for the development of 

saliency prediction models [3,4,5] and attention gated mod-

els [6, 8], while probe movement and position data are use-

ful for representation learning [9] and developing volume 

reconstruction models [6], and probe guidance models [7]. 

This paper presents an open-source data acquisition tool, 

SonoAssist1, that we developed to facilitate the creation of 

 
1 https://github.com/OneWizzardBoi/SonoAsist 

POCUS assistance systems. The software is easy to use and 

can acquire synchronized streams from the following devic-

es: an eye tracker, an RGBD camera, IMUs (Inertial Meas-

urement Unit), and an ultrasound scanner.  Other open-

source projects such as PLUS [10] and IGSTK [11] have 

previously facilitated the rapid prototyping of ultrasound-

guided intervention systems through compatibility with a 

wide range of tracking and imaging devices as well as a 

broad variety of functionalities including routines for spatial 

and temporal calibration and synthetic ultrasound image 

generation.  In contrast with these open-source toolkits, 

SonoAssist supports the use of eye tracking, is specifically 

designed for the previously mentioned set of use cases and 

is ready for use out of the box with no development re-

quired. 

Recent papers about the utilization of sonographer exper-

tise to automate tasks related to medical ultrasound present 

their own data acquisition systems tailored to the research-

ers’ specific needs [1, 7]. These systems are very similar to 

ours.  For instance, the acquisition system developed by 

Ahmed and Noble [1] acquires ultrasound images from a 

portable ultrasound scanner and gaze data from an eye 

tracker to develop a scan plane classifier that utilizes human 

eye movements. However, despite having been used for 

research, the design of such systems is rarely thoroughly 

documented nor is their performance characterized in the 

literature. This paper aims to bridge this gap by detailing the 

design of such a system, thoroughly characterizing some of 

its performance metrics, and making it available for consul-

tation and customization. 

The rest of this paper covers the general design of Sono-

Assist (Section 2), the mechanisms involved in the acquisi-

tion and synchronization of data streams (Section 3), and 

the handling of gaze data (Section 4). We also provide a 

quantitative performance evaluation of the software’s per-

formance in terms of device acquisition rates and the accu-

racy and precision of eye tracking. 

II. SOFTWARE DESIGN AND USAGE 

A. Software I/O 

SonoAssist can acquire data from five different sources: 

an ultrasound probe (L7 linear, Clarius), an RGBD camera 

(Realsense D435, Intel), an eye tracker (4C, Tobii), an IMU  
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Fig. 1 SonoAssist’s main mode interface. 

(MetaMotionC, MbientLab), and a screen recorder. In terms 

of data flow, dedicated acquisition threads pull data from 

the sensors to write them to the appropriate output files. For 

instance, sensors providing a stream of images are associat-

ed with two file types. The first one (.avi or. bag) contains 

the acquired images and the second one (.csv) indexes them 

for synchronization purposes. The remaining sensors are 

associated with (.csv) output files which store and index the 

measurements. 

 

B. User interface and intended use 

Simplicity of use is the principal requirement that guided 

the design of SonoAssist. Consequently, the user interface is 

light and the more complex configuration parameters are 

tucked away in a configuration file. In terms of use, the 

software has two display modes. The first mode is the pre-

view mode and it allows the user to verify the different 

input streams when setting up an acquisition. The second 

mode is the main mode (Fig. 1) and it displays the ultra-

sound image feed in real-time. During an acquisition, the 

sonographer uses the main mode to analyze the ultrasound 

images from the probe in real-time while the eye tracker 

positioned under the laptop screen is recording his or her 

gaze and the RGBD camera is recording the movements of 

the ultrasound probe. 

III. TIMING AND SYNCHRONIZATION 

A. Ultrasound image display rate 

In our benchmarking experiments, we used an HP Pavil-

ion 15-cs2 laptop equipped with an Intel i7-8565U CPU. 

The first row of Table 1 provides the ultrasound display 

rates for two different ultrasound display sizes: (540 x 960) 

px for config 1 and (720 x 1280) px for config 2. We meas-

ured an average display rate of 22.72 Hz for the smaller 

display and 22.43 Hz for the larger one. To obtain these 

measurements, we simply counted the number of frames 

displayed during benchmarking acquisition sequences and 

divided the count by the duration of the sequences. In total, 

ten acquisition sequences, ranging from 50 to 65 seconds in 

length, were analyzed for each configuration. 

In addition to the average value, the variation of the dis-

play rate was also characterized to ensure that it remains 

stable throughout the acquisition sequences. We measured 

an average time interval of 43 milliseconds (23.19 Hz) sepa-

rating the display of consecutive ultrasound images with a 

standard deviation of 6.7 milliseconds. Note that this meas-

urement covers both display sizes (config 1 and config 2) 

and was obtained by analyzing 20 acquisition sequences 

ranging from 50 to 65 seconds in length. By analyzing the 

measured frequency distribution, we can conclude that 

95.5% of the frames are displayed at a rate ranging between 

16.9 Hz and 29.4 Hz. On a practical level, these results 

validate SonoAssist’s acquisition design because the display 

rate values are relatively close to the previously discussed 

average display rates (22.72 Hz and 22.43 Hz). This means 

that, over the length of an acquisition sequence, the dis-

played images are evenly spread out in time. Note that the 

rate variations are mainly due to the fact that the software 

does not run on dedicated hardware and that the display rate 

is tied to the ultrasound scanner’s acquisition rate, which 

can vary.  

Handling data from sources other than the ultrasound 

scanner (i.e. the screen recorder, the eye tracker, and the 

external IMU) requires fewer steps because the correspond-

ing data are not displayed. Indeed, after the reception of the 

data, or their generation, in the case of the screen recorder, 

they are timestamped and directly saved to the disk. Conse-

quently, measuring the acquisition rate associated with the 

previously mentioned sensors boils down to analyzing the 

timestamps to calculate the average number of acquisitions 

saved to the disk every second. However, future versions of 

the software could include additional data visualization 

functionalities which would call for a change in our bench-

marking approach. Table 1 provides the average acquisition 

rate for each sensor. We can observe that the screen record-

er’s average acquisition rate is 13.64 Hz and that across the 

3 different sensor configurations, the average acquisition 

rates for the external IMU and the eye tracker are respec-

tively about 101 Hz and 86 Hz. As expected, the average 

acquisition rates for the external IMU and the eye tracker 

are close to the rates specified by the manufacturer which 

are respectively 100 Hz and 90 Hz. 

B. Ultrasound probe data synchronization 

When characterizing SonoAssist, we did not assume that 

the image and IMU data pairs from the ultrasound probe are 



 3 

The 44nd Conference of The Canadian Medical and Biological Engineering Society 

La Société Canadienne de Génie Biomédical 

synchronized. In practice, one of the data streams could 

consistently be ahead of the other due to the ultrasound 

scanner’s inner workings. Therefore, to quantify the time 

Table 1 Average acquisition frequencies (Hz) for sensors across different 

sets of configurations. The averaging was done over 10 acquisitions of 50 

seconds for all configurations. Acquisition configuration #1: external IMU, 
eye tracker, RGBD camera and Clarius probe with a (540 x 960) (px) 

display. Acquisition configuration #2: external IMU, eye tracker, RGBD 

camera and Clarius probe with a (720 x 1280) (px) display. Acquisition 
configuration #3: external IMU, eye tracker, RGBD camera, and screen 
recorder. 

Sensors Config #1 Config #2 Config #3 

US Probe with integrated IMU 22.72 Hz 22.43 Hz None 

Screen recorder None None 13.64 Hz 

Eye tracker 87.01 Hz 86.90 Hz 85.82 Hz 

External IMU 101.75 Hz 101.76 Hz 101.2 Hz 

 

offset between the data pair members, we performed an  

experiment inspired by the temporal calibration procedure 

described in the Stradx freehand 3D ultrasound software 

paper [12]. The experiment consists of simultaneously ap-

plying a step input to the image and IMU data streams by 

holding the probe still against a phantom for a few seconds 

and then jerking it away. This jerk motion causes a large 

variation in both data streams, and the time difference be-

tween these variations corresponds to the offset between the 

data pair members. 

To quantify the variations in the image stream, we used 

the same method as in Stradx [12], which takes in two con-

secutive images and produces a difference measure (Δim) 

that is robust to speckle noise and sensitive to changes 

across their whole surface. To measure changes in the IMU 

data stream, we calculated the variation in the linear accel-

eration vector of consecutive acquisitions. This calculation 

(Eq. 1) takes in 2 consecutive IMU acquisition (A1) and 

(A2) and calculates the variation (ΔA): 

 ∆A =  |
‖A2‖− ‖A1‖

‖A1‖
|, (1) 

 where A1 = [𝑎1𝑥
, 𝑎1𝑦

, 𝑎1𝑧
]  andA2 = [𝑎2𝑥

, 𝑎2𝑦
, 𝑎2𝑧

].  

To identify the start of the jerk motion, we set a variation 

threshold of 2% for (∆A) and 100% for (Δim) when com-

pared to the average value. The results of the experiment 

(Fig. 2), show that, for the selected thresholds, the IMU data 

and the ultrasound image streams are offset by a single 

acquisition period (43 milliseconds). However, because the 

identified motion start points are so close, strategic thresh-

old values could be selected to reduce the offset to 0 sec-

onds. Therefore, we consider the ultrasound image and IMU 

data streams to be synchronized. 

 

 

Fig. 2 Results of the synchronization test performed on the paired IMU 

data and ultrasound images from the ultrasound probe. 

IV. GAZE DATA PROCESSING 

A. Measuring the default gaze tracking accuracy 

SonoAssist utilizes the Tobii 4C, an inexpensive con-

sumer-grade eye tracker made for desktop gaming and 

mouse control to collect gaze data. Since these applications 

do not require the collected gaze data to be saved for later 

analysis, the manufacturer does not provide precise accura-

cy benchmarks for the device. Despite this, we still decided 

to use the Tobii 4C because of its accessible price point and 

because it was used in previous studies [3, 5].  

To generate accuracy benchmarks, we asked three volun-

teers to conduct custom acquisition sequences designed to 

enable the comparison of gaze point positions with ground 

truth positions. Indeed, the acquisitions utilize visual targets 

(red dots), positioned on the corners of the main mode’s 

ultrasound display for which the exact positions are known. 

During these acquisitions, the user places his or her head 

approximately 0.75 meters away from the display and se-

quentially stares at each target for 5 seconds. Furthermore, 

the user must visit each target three times while moving his 

or her gaze as fast as possible in between them. Globally, 

each volunteer performed this sequence three times, so that 

nine acquisitions were conducted in total. 

When analyzing data from these experiments, gaze 

points associated with a high movement speed were filtered 

out by a 0.5°/second gaze speed filter, leaving only the 

points associated with fixations on the visual targets. After 

the filtering, the average distance, in pixels, between each 

gaze point and its nearest visual target was calculated. This 

measurement represents the error between the position of 

collected gaze positions and their intended target. The top 

half of Table 2 presents this average error for each of the 

nine benchmarking acquisitions. Note that for the global 
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error, the (X) and (Y) percentages correspond to the portion 

of the screen’s width and height occupied by the error. 

B. Gaze tracking error correction 

Because the average tracking error for users remains rela-

tively constant across their acquisition sequences, the track-

ing accuracy can be improved in post-processing, for each 

user, by shifting the position of all gaze points by the oppo-

site of their tracking error. The bottom half of table 2 pre-

sents the average tracking error for each of the nine bench-

marking acquisitions after the error correction procedure. 

When comparing the gaze accuracy measurements before 

and after the correction, we observe that the procedure pro-

duces a significant accuracy improvement. Indeed, the 

global average error is reduced from 52.8 (px) to 23.9 (px) 

which corresponds to a 54.7% improvement in accuracy. 

 
Table 2 Average gaze tracking error (in pixels) measured in the bench-

marking acquisitions, before and after performing gaze error correction. 

Note that for the global error, the (X) and (Y) percentages correspond to 
the portion of the screen’s width and height occupied by the error. 

Before gaze drift correction 

 Subject 1 Subject 2 Subject 3 

Acquisition #1 67.8 px 69.3 px 29.2 px 

Acquisition #2 67.1 px 67.3 px 28.2 px 

Acquisition #3 59.7 px 58.0 px 28.2 px 

Global average error: 52.8 px (X: 2.7 % and Y: 4.9%) 

After gaze drift correction 

Acquisition #1 31.0 px 22.2 px 22.0 px 

Acquisition #2 26.8 px 24.1 px 18.7 px 

Acquisition #3 31.2 px 21.8 px 17.4 px 

Global average error: 23.9 px (X: 1.2 %, Y: 2.2 %) 

 

V. CONCLUSIONS 

This paper presented SonoAssist, software that facilitates 

the data collection process associated with the development 

of POCUS assistance systems. Practically, the software’s 

US image display (22 Hz) is responsive enough to be used 

for freehand imaging and the acquisition rates of the other 

relevant sensors are appreciably higher (eye tracker: 87 Hz, 

external IMU: 100 Hz). This means that all acquired ultra-

sound images can be paired with useful data from these 

sources. Furthermore, the gaze tracking accuracy (+/- 23.9 

pixels) is suitable for the generation of saliency maps be-

cause the error is just under 1° of visual angle (33 horizontal 

pixels and 92 vertical pixels for an HD screen). As such, 

SonoAssist promises to be a useful tool to speed up the 

development of research prototypes for the study of sonog-

rapher behavior and the development of POCUS guidance 

systems. 
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