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Abstract— Advances in wearable devices have allowed for
the collection of multimodal biomedical data from hundreds
of subjects in everyday environments (i.e., in the wild). This
has enabled the development of real-time monitoring of vari-
ous human mental states, such as stress and anxiety, in highly
ecological settings. Within a hospital setting, for example, this
allows for prediction of burnout within medical staff, as well
as anxiety within the patient population, thus improving their
quality-of-life. Long-term monitoring via wearables has allowed
for large amounts of data to be collected – so-called big data
– and thus has opened doors for new applications relying on
data-heavy deep learning algorithms. One question that remains
unanswered, however, concerns the benefits of blindly applying
deep learning algorithms with the collected data versus spend-
ing some time and resources on feature engineering prior to ma-
chine learning. Feature engineering relies on domain knowledge
to extract relevant parameters from the collected signals. In this
paper, we aim to answer this question. In particular, we use a
dataset collected from 200 hospital workers over a period of 10
weeks during their work shifts. We compare the advantages of
using data directly from the wearable devices and applying them
to deep learning algorithms versus carefully-crafted features ap-
plied to conventional machine learning algorithms. Experimen-
tal results are reported for stress and anxiety measurement from
heart and breathing rate signals.

Keywords— Deep Learning, feature engineering, mental state
monitoring, cardio-pulmonary signals, HRV.

I. INTRODUCTION

There is no doubt that the COVID-19 pandemic has put an
added burden on healthcare workers around the world, with
reports of increasing burnout rates [1]. Moreover, record-high
levels of stress and anxiety are being reported by the general
population; in the USA alone, a recent survey showed that 8
in 10 adults reported significant increases in stress levels due
to the pandemic [2]. As such, monitoring of stress and anxiety
in real-time has become an extremely important topic.

†Equal Contribution

Wearable technologies have played a key role in moni-
toring human mental states even prior to the pandemic [3].
Wearables allow individuals to move freely within the envi-
ronment (i.e., “in the wild" compared to controlled labora-
tory conditions) and allows for long-term monitoring of nu-
merous psychophysiological parameters. The resultant large
amounts of data, in turn, have been crucial for the develop-
ment of new monitoring and diagnostic applications relying
on recent deep machine learning algorithms (e.g., [4–6]. The
optimal depth of such “deep” algorithms is not known before-
hand and is usually optimized on a per-case basis to trade-off
feature generation and the non-linear mapping between in-
put data (measured raw or pre-processed signals) and output
labels (stress and anxiety levels in our case) [7].

An alternative to this fully-data-driven approach is the
more classical approach that relies on domain knowledge to
carefully craft features (termed “feature engineering”) that
lend high discriminatory power, and interpretability, based on
prior psychophysiological insights. Such features can then be
coupled with conventional machine learning algorithms. One
question that remains unanswered is whether blindly apply-
ing data from wearable devices directly to deep neural net-
works is better than carefully crafting features and using con-
ventional classifiers. Here, we aim to answer this question.

While deep neural networks can find optimal features and
mappings in a data-driven way, in-the-wild measurements
are known to generate many confounding factors, includ-
ing movement artifacts, which could lead to erroneous de-
cisions. Such limitations could be overcome with artifact-
robust feature engineering. Moreover, it is known that deep
neural networks have many hyper-parameters that need to be
optimized, thus take a large amount of time and computa-
tional resources, thus leaving a large carbon footprint [8] with
oftentimes just incremental improvements [9].

To help answer this question, we rely on a recently-
collected dataset of 200 hospital staff who were monitored
daily for a period of 10 weeks while wearing a smartshirt that
collected cardiac, pulmonary, and activity information [10].
Self reported ratings of stress and anxiety were also collected
daily. Two sets of features were computed. First, benchmark
features measured by the device itself were used. These in-
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cluded several time- and frequency-domain heart rate vari-
ability (HRV) features measured from an electrocardiogram
signal [11], as well as breathing rate and breathing depth [12].
Next, hand-crafted features that take the non-linear fractal dy-
namics of physiological signals into account were extracted
[13, 14]. These features have been shown to decouple con-
founding factors, including movement artifacts [15–17]. We
then compare the results of using benchmark features with
deep neural networks of varying depths against the results
achieved with feature engineering and conventional support
vector classifiers.

II. MATERIALS AND METHODS

A. Participants

The TILES dataset we use in this study is from 200 partici-
pants (66 male, 134 female; age 38.6±9.8 years) from a pool
of employees (nurses and staff) of a large urban hospital in
California. Two-thirds of the participants were nurses while
one-third were hospital staff. Data were collected for a dura-
tion of 10 weeks. Participants consented to participate in the
study, which received ethical board approval from the affil-
iated institutions. Complete details about this publicly avail-
able dataset can be found in [10]. Participants carried out their
work day as usual but were asked to fill a brief phone-based
daily survey that included information on levels of anxiety
and stress on a 5-point scale. Participants were outfitted with
multiple wearable sensors to collect a variety of biometric
data, including audio features, heart rate, respiratory rate, and
sleep quality. More specifically, a custom audiometric badge,
a Fitbit Charge 2, and an OMsignal smartshirt were used. In
this paper, only the cardiac and respiratory information mea-
sured by the OMsignal smartshirt are used.

B. Feature extraction and aggregation

Standard time- and frequency-domain HRV metrics were
used as benchmark measures. These are typically extracted
and used by smart devices. A complete list can be found in
Table 1. For breathing, the following features directly pro-
vided by the OMSignal garment were used: mean and stan-
dard deviation of the instantaneous breathing rate ( fR), and
breathing depth (bD). These features have been shown in the
literature to correlate with stress [12,18] and anxiety [12,15].

More recently, novel HRV and breathing features have
been proposed to take into account non-linear behaviour of
cardio-pulmonary signals and interactions, as well as to pro-
vide increased robustness against movement artifacts [16,17].
Specifically, multi-scale permutation entropy HRV features
have been shown to better quantify the complexity of the

heartbeat time series at difference scales [14]. When cou-
pled with motif features [19], improved robustness to artifacts
was achieved. For breathing, complex dynamical behaviour
[13, 20] can be modelled by extracting statistical and com-
plexity features from three time series: inhale-to-exhale ratio,
inter-breath interval, and amplitude envelope series. The in-
terested reader is referred to [16, 17] for complete details.

All features were extracted over 5-minute long windows
and further aggregated over an entire day using the following
statistical functionals: mean, standard deviation, coefficient
of variation, median, min, max, 1st and 3rd quartile, skew-
ness and kurtosis. Additionally, the OMsignal smart garment
provides a quality metric for its heart rate series measure-
ment termed RRPeakCoverage. As such, several new quality-
aware features have been developed, thus providing context
to the task at hand. The features include quality weighted
mean, standard deviation, and coefficient of variation. Over-
all, 250 breathing features (40 benchmark and 210 proposed)
and 1036 HRV (182 benchmark and 854 proposed) features
are available for analysis.

Table 1: Different groups of HRV features extracted

Time domain HRV features
mean, standard deviation, coefficient of variation,
rmsdd, pNN50, mean of 1st diff.,
standard deviation of absolute of 1st diff.,
normalized mean of absolute 1st diff

Frequency domain HRV features
High frequency power (HF), normalized HF,
Low frequency power (LF), normalized LF,
very low frequency power, HF/LF

C. Deep learning models

Deep neural networks have shown to provide state-of-the-
art performance across numerous domains. By modifying the
number of hidden layers and neurons, one can adjust the com-
plexity of the internal feature generation and non-linear map-
ping between input signals and output labels of interest. Here,
we explore three different network depths to gauge the bene-
fits of increased model complexity, given benchmark features
as input. These included a deep (DNN, 8 hidden layers), a
medium (MNN,5 hidden layers), and a shallow (SNN,3 hid-
den layers) multilayer perceptron (MLP) network. Increasing
the number of layers, in turn, also increases the number of
parameters that need to be optimized and stored, as well as
training time [7]. Here, all hidden layers used a ReLU acti-
vation function with a sigmoid activation for the output layer.
Dropout was used for regularization for the first two layers,
L2 weight regularization was used in all layers and Adam was
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Table 2: Comparison of evaluated models

Architecture No. parameters L2 parameter Dropout rate
SNN 14,337 0.001 0.1
MNN 16,449 0.001 0.1
DNN 19,617 0.0001 0.3

used as the optimizer. The networks have similar architec-
tures, where the first hidden layer has 64 neurons, the last hid-
den layer has 16 neurons and the layers in between have 32
neurons each. The number of layers with 32 neurons depends
on the total number of hidden layers. The model architectures
along with the total number of parameters and regularization
parameters are described in Table 2.

For hyper-parameter tuning, the data-set was split in an
80-20% split with a random seed. Dropout rate and L2 reg-
ularization parameter were then selected using grid search.
Model hyper-parameters were optimized for the benchmark
dataset. A learning rate of 0.01 and 100 epochs were chosen
for both stress and anxiety.

D. Classification and feature selection

A 5-fold cross-validation setup was repeated five times
with different random seeds to shuffle the data resulting in 25
(5-fold X 5) unique train and test set combinations for a ro-
bust evaluation of the prediction pipeline. Training traditional
machine learning classifiers with a large feature set may lead
to overfitting with many features also being highly correlated.
As such, recursive feature elimination was performed with a
step size of 10 using the Extra Trees Classifier. The top 100
features are then selected for classification at each cross val-
idation step. For classification, a binary task was chosen and
the stress and anxiety ratings typically fell into two clusters,
i.e., high/low stress and anxiety levels.

For comparisons, a conventional support vector machine
(SVM) classifier with an RBF kernel and a ’balanced’ setting
is also explored. This setting uses the target value to auto-
matically adjust weights inversely proportional to class fre-
quencies in the input data [21]. As the data is imbalanced (%
imbalance for stress : 0.582 and anxiety: 0.432), balanced ac-
curacy (BACC), F1-score (F1) and Matthews correlation co-
efficient (MCC) [22] are used as figures-of-merit. Additional
figures-of-merit include number of parameters that need to be
stored and training time. The pipeline and evaluation metrics
are implemented using scikit learn [21] and keras [23].

As we are interested in answering the question whether
deeper models with benchmark features are better than con-
ventional classifiers but with carefully-crafted features, our
experiments focus on the use of benchmark features with the
deep neural networks (and an SVM for comparisons) and the
engineered features with the SVM.

Table 3: Performance comparison of HRV features (* represents
significance (p < 0.001) compared to NN models)

Stress Anxiety
Model BACC F1 MCC BACC F1 MCC
SNN 0.606 0.684 0.216 0.593 0.528 0.188
MNN 0.601 0.672 0.204 0.590 0.529 0.182
DNN 0.600 0.666 0.203 0.592 0.523 0.187

SVM-Bench 0.624* 0.657 0.245 0.601 0.545 0.203
SVM-Proposed 0.652* 0.681 0.300* 0.630* 0.582* 0.260*

III. RESULTS AND DISCUSSION

Tables 3 and 4 show the results for stress and anxiety pre-
diction using HRV and breathing features, respectively. Re-
sults for varying-depth neural network models and bench-
mark features, along with SVM models for both benchmark
(SVM-Bench) and proposed (SVM-Proposed) features are
shown. All models perform significantly better than a random
voting classifier (p < 0.01/6, with bonferroni correction).

As can be seen, in all cases, the SVM-proposed pipeline
significantly outperformed (p < 0.01/10, bonferroni correc-
tion) all the NN models in BACC and MCC metrics. For the
F1 metric, in case of stress prediction, the performance is
similar to NN models for both HRV and breathing, while be-
ing significantly better for anxiety. Compared to the best per-
forming NN models, for HRV features, the SVM-Proposed
pipeline shows an improvement of 7.5% BACC for stress and
6.2% for anxiety, while for breathing features, it shows an im-
provement of 8.4% for stress and 6.7% for anxiety over the
best performing NN models.

The SVM-bench pipeline, in turn, performs similar to NN
models in both the BACC and MCC metric in most cases,
with significant improvement observed for BACC metric with
HRV based stress prediction. For the F1-metric, the NN mod-
els consistently outperform the SVM-bench for stress in both
HRV and breathing feature sets. While for anxiety, the SVM-
bench pipeline is either similar (for HRV) or significantly bet-
ter (for breathing) than the NN models. Similar findings have
been reported recently for neuroimaging studies [24], sug-
gesting that the non-linearities in data may not be exploitable
at available sample sizes, and simpler algorithms may per-
form equally well. Finally, all three NN models (SNN, MNN
and DNN) have comparable performance with no signifi-
cance performance improvement with increasing depth.

Table 5 shows the average training and hyper-parameter
tuning times across stress and anxiety for all the models
for HRV and breathing features. Although the training times
are comparable, the hyper-parameter tuning required for NN
models leads to about 6-10 times the total time compared to
SVM-proposed pipeline for HRV features and about 19-26
times the total time compared to SVM-proposed pipeline for
breathing features while giving better performance.
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Table 4: Performance comparison of breathing features (* represents
significance (p < 0.001) compared to NN models)

Stress Anxiety
Model BACC F1 MCC BACC F1 MCC
SNN 0.587 0.682 0.182 0.593 0.517 0.192
MNN 0.593 0.672 0.189 0.588 0.514 0.181
DNN 0.581 0.679 0.168 0.593 0.527 0.189

SVM-Bench 0.588 0.637 0.174 0.591 0.562* 0.180
SVM-Proposed 0.643* 0.680 0.283* 0.633* 0.592* 0.265*

Table 5: Time for hyper-parameter tuning and training (in minutes)

HRV Breathing
Model Tuning Training Tuning Training
SNN 125.42 8.6 124.88 8.48
MNN 137.28 10.95 141.8 10.86
DNN 175.28 11.42 168.48 11.09

SVM-Bench 0 5.3 0 1.1
SVM-Proposed 0 18.3 0 6.75

IV. CONCLUSION

In this paper, we show that feature engineering methods
combined with simpler machine learning pipelines are capa-
ble of outperforming benchmark features with different neu-
ral networks architectures for mental state monitoring appli-
cations for “in-the-wild” conditions. These results show the
importance of feature engineering especially for data col-
lected in highly ecological settings. Future work will explore
the fusion of HRV and breathing features, the use of crafted
features with deep neural networks, as well as other deep neu-
ral network architectures.
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