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Abstract— Psychological assessments are often used to help
assess cognitive impairments. Inconsistencies in marking these
assessments in general, and in cube drawing tests in particu-
lar, can lead to misdiagnoses and irregularity in accurate mon-
itoring of the cognitive status; that can be crucial especially in
multi-site studies. As a pilot study, a machine learning model
using a convolutional neural network was developed to classify
drawn cube shapes as correct” or “incorrect” automatically.
Techniques such as K-fold cross validation, image augmenta-
tion, and early stopping were used to optimize the model us-
ing training data. A model with a final validation accuracy of
85.7% was developed as a proof of concept; suggestions for fur-
ther improvement are presented in this paper. This model will
eventually help to ensure similar scoring across different sites
when patients are assessed by different assessors.
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work, image processing, machine learning

I. INTRODUCTION

Standardized psychological assessments for cognition,
such as the Montreal Cognitive Assessment (MoCA) [1], the
Wechsler Memory Scale (WMS) [2], the Alzheimer’s Dis-
ease Assessment Scale-Cognitive Subscale (ADAS-Cog) [3],
etc., often include visuospatial tasks in which participants are
instructed to reproduce geometrical shapes such as a cube.
Based on the accuracy of how participants re-draw the shape,
they receive a score from their human assessor. The scoring
of such tests can vary slightly among assessors due to the
subjective nature of the assessment. Although tests such as
ADAS-Cog have proven to be quite accurate for severe cases
[4], studies have shown that such assessments may not be able
to consistently detect mild cognitive impairments [5]. This
may be contributed by the fact that even one score higher or
lower in these assessments can be crucial [6], as it signifi-
cantly affects the evaluation and change in cognition of a pa-
tient before and after a treatment. As a result, the variability
of scoring among assessors, particularly in multi-site studies,
may lead to a systematic bias in the assessments. In this pilot

study, our aim is to develop an image processing algorithm
to score such drawings automatically avoiding variability in
scoring due to its subjective nature.

II. MATERIALS AND METHODS

A. Data

A data set of 185 cube drawings was collected from a cur-
rent clinical trial [7] from both MoCA and ADAS-Cog cube
drawing part of the assessments. For consistency, all data
used for training and measuring the algorithm’s accuracy was
additionally examined by one trained assessor.

B. Machine Learning Model

Convolutional Neural Networks (CNNs) are a common
machine learning model to use when classifying images
[8]1,[9]. The CNN works by applying filters, known as ker-
nels, to the images to extract relevant features needed to clas-
sify it [8],[10]. A binary classification system was used to
classify correct cubes as 1s and incorrect cubes as 0s. Out
of the 185 collected data in this study, the trained assessor
scored 118 as incorrect (0) and 67 as correct (1), thus, pre-
senting a lack of balance between the two class sizes. If not
handled correctly, an unbalanced data set may affect proper
training as the model will have more exposure to one class,
thus damaging generalizability of the model.

C. Pre-processing

Pre-processing of the data consisted of cropping each im-
age to a perfect square, scaling to 240 x 240 pixels, convert-
ing to grey scale, then using a threshold value (> 225/255)
to represent the image pixels in a binary matter (0 or 1). Fi-
nally, these images were up sampled by randomly selecting
correct cubes from the data set using a uniform probability
distribution to have an equal number of correct and incorrect
cubes to train the model with,thus, reducing bias related to
the initially unbalaned data set. A second data set was cre-
ated by augmenting 20% of the data; horizontally stretching
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Fig. 1: CNN Diagram

each incorrect cube by a random value and adding a border
of 30 pixels around each correct cube, creating a new data set
of 222 cubes.

D. Training

Training was done using K-fold cross validation [11] with
the keras package and with k = 5 folds using the entire data
set. The parameters with the best performance were then
trained and tested with an 80-20 ratio and validation accu-
racy was measured. Early stopping was used to discourage
over-fitting of the model by monitoring validation accuracy
with patience = 15 epochs.

Parameters were determined by storing trial results in a
pandas data frame and selecting the highest performing pa-
rameter combination. The parameters chosen were batch size
= 90, epochs = 150, learning rate = 0.001, 12 weight regu-
larization = 0.01, dropout rate = 0.1, and sigmoid activation
applied to the final layer. The RMSProp optimizer was used
along with keras binary cross entropy loss function [12].

Three final models with altered parameter values were cre-
ated to best suit different data sets. The three data sets were
Scaled Data (non-binary) — SD, Augmented Data — AD, and
Non-augmented Data — ND. These sets were chosen to repre-
sent the importance of having binary data and to understand
the effects of the augmentation.

CNN depth was determined from experimentation of
smaller networks, proving to have a difficult time learn-
ing from the inherent slight bias of the upsampled data set.
Adding batch normalization and creating other variations of
the layers provided little improvement to our validation accu-
racy. The greatest improvement was found by increasing the
depth of hidden layers, thus arriving at the current architec-
ture.

Each model was trained on a Microsoft Surface Book 2
with 1.9 GHz CPU, 16.0 GB RAM, and did not utilize a dis-
crete GPU.

Table 1: Results of final 3 models

Model ROC AUC Validation Accuracy Score
SD 85.5 74.6%
AD 91.9 82.4%
ND 91.5 85.7%

III. RESULTS

Various parameters were methodically tested to determine
the best model for each data set, and the results can be seen
in Table 1. ND was determined to have the highest validation
accuracy of 85.7%, showing a high confidence in clearly cor-
rect or incorrect cubes as seen in Fig. 3 (99.8% and 0.027%).
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Fig. 2: Graphs displaying Validation Accuracy and Validation Loss

The Receiver Operating Characteristic (ROC) graph has
an Area Under Curve (AUC) of 0.92, demonstrating a strong
ability to distinguish between the two classes [13]. Figure
2 showcases the validation accuracy and loss as the model
is trained. The use of early stopping helped eliminate over-
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fitting, and a steady increase in accuracy and decrease in loss
reveals the simplicity of the image and the model’s ability to
learn quickly and effectively.

Table 2: Confusion matrices of final 3 models

Model TN FP FN TP

SD 0.69 0.31 0.19 0.81
AD 0.85 0.15 0.22 0.78
ND 0.78 0.22 0.06 0.94

The ND model displayed a recall of 0.94, precision of
0.81, and misclassification rate of 0.14 for the test data as pre-
sented in Table 2. The ND model had a higher performance
classifying the positive class (correct cubes). In the context of
this study, there is no inherent benefit to having unbalanced
classification, meaning further tuning of the model would be
beneficial to finding more balance between the classes.

IV. DISCUSSION

For multi-site clinical trials, inter-rater reliability is a ma-
jor issue of concern if a standardized assessment (i.e. ADAS-
Cog, WMS, etc.) is used as the main outcome measure. A
score lower or higher can change how the effect of the treat-
ment is marked for a particular participant. This concern is
amplified for large multi-site studies as re-scoring and re-
evaluation of all assessments by one trained assessor is time-
consuming and costly [14]. Additionally, cognitive assess-
ments containing a visuospatial component, such as the Mini-
Mental State Examination (MMSE), the most prevalent as-
sessment tool for cognitive impairment in a clinical setting
[15][16], retain the aforementioned issues with scoring reli-
ability. Thus, the effect of scoring variation directly impacts
the severity of cognitive impairment measured by clinicians
and health professionals. For these reasons, we have initial
evidence to show that a machine learning model could re-
liably be used to score subjective visuospatial tasks. In this
study, we accomplished this by first training on a simple cube
drawing task.

The results of our pilot study show an accuracy of 85.7%.
This is encouraging given that inter-rater reliability for a cog-
nitive assessment has been shown to be 88% [17]. However,
we do acknowledge that our presented model accuracy is bi-
ased since we used the entire data set to derive the parameters
of the model while its classification accuracy was determined
using k-fold cross-validation with folds = 5. Nevertheless, fu-
ture studies using larger samples will most likely increase the
accuracy and reliability of the automated scoring model.

In designing such an automated scoring model, threshold-
ing, the use of a cutoff value to accentuate pixels assisting

with feature extraction in a CNN [18], is of particular im-
portance. In this study, thresholding was used to simplify the
cube image and remove the bias related to the shade of the
image. The cutoff value of 225/255 was chosen by testing var-
ious values and comparing the processed image to the orig-
inal to determine the highest threshold which properly rep-
resented the entire cube. The benefits of thresholding can be
seen in Tables 1 and 2 comparing the results of SD with ND.
The architecture of ND model was sufficiently simpler
than VGG16 [19] and offered higher performance on this
data set. Thus, three layers was determined to be an adequate
number of layers to capture the interactions between line seg-
ments and patterns between sections of the cube. The choice
of sigmoid activation was made to provide an output in the
range of 0-1; as well as it presented the highest validation
accuracy when compared to other activation methods.

0:027%: 8:8% 0.002% 98.5%

3a. 0 cube 3b. 1 cube 3c. Crooked cubes

11.3% 99.8%

3d. Rectangular "cubes”

Fig. 3: 3a. An incorrect cube correctly classified, 3b. A correct cube
correctly classified, 3c. Inconsistencies in classifying crooked or tilted
cubes, 3d. Inconsistencies in classifying rectangular shaped “cubes”

Achieving a validation accuracy of 85.7% (Fig. 2a)
demonstrates effective model training with the help of early
stopping to prevent over-fitting . This consistency can also
be seen in decreasing validation loss while maintaining little
divergence from training loss in Fig. 2b.

On the other hand, the model was inconsistent in classi-
fying rectangular cubes or those with non-parallel lines, as
shown in Fig. 3b and 3c. This inconsistency is a limitation
of the training data and the inconsistencies in the initial clas-
sifications. The MoCA criteria for scoring the cube drawing
are not explicit, requiring an assessor to determine if lines
are “parallel enough” or “straight enough”; hence leading
to inconsistencies in classifying the cubes. Furthermore, this
might relate to why the data augmentation (AD) hurt the per-
formance of the model.

Further experimentation is needed for improving accuracy
and reliability. This could include, but is not limited to using
He initialization [20], experimenting with optimizers, and us-
ing cross-validation before selecting parameters to ensure a
high blind test accuracy. To reduce the inconsistencies within
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classifying the training data, multiple assessors could classify
all the data and a voting system could be used to determine
the final classifications. This can help bolster the data pre-
sented herein, so the model is no longer learning from data
from a single trained assessor, but now averages out the as-
sessor bias. Finally, a further experiment could involve hav-
ing multiple assessors classify a data set and compare these
to determine an inter-rater reliability score for human scored
assessments. This score could be compared to the reliability
of the CNN model to determine its effectiveness and if it is a
beneficial supplement to human assessors.

V. CONCLUSION

The results of this pilot study are encouraging for us-
ing machine learning to remove assessor bias and inter-rater
variability when scoring visuospatial tasks such as the shape
drawing in standard psychological assessments, particularly
for drawing a cube. Further investigations could quantita-
tively determine if the model exceeds the reliability of hu-
man scoring in shape drawing, and whether finer tuning of
the model’s structure could lead to improved validation ac-
curacy and precision. Once improved and tested, such au-
tomated scoring for shapes will help with the consistency
and reliability of assessments done by different assessors in
a large multi-site study; thus, removing the bias and reduc-
ing the cost of the studies. Thus, the results herein provide
evidence of a first step towards applying machine learning to
improve scoring reliability in cognitive assessments contain-
ing a visuospatial element.
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