
 1 

The 42nd Conference of The Canadian Medical and Biological Engineering Society 

La Société Canadienne de Génie Biomédical 

Effect of Lateral Resolution on Classifying Individual Finger Flexions using 

Ultrasound 

A. J. Fernandes1 Y. Ono1 and E. Ukwatta1,2 

1Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada 
2School of Engineering, University of Guelph, Guelph, Canada 

 
Abstract— B-mode ultrasound imaging has recently shown 

promise in achieving higher classification accuracies than sur-

face electromyography for predicting discrete hand gestures 

and individual finger movements. This preliminary study inves-

tigates the performance in classifying finger flexions when re-

ducing the lateral sampling interval resolution of a conventional 

clinical ultrasonic imaging probe with data collected from one 

subject. An experiment using spatial and temporal features, ex-

tracted from ultrasound radio-frequency (RF) signals are used 

with linear discriminant analysis to classify individual thumb, 

index, middle, ring and pinky finger flexion movements. The 

spatial lateral sampling interval is increased from 315 µm to 10 

mm (reduction in lateral resolution) by averaging four groups 

of 32 consecutively acquired A-mode ultrasound RF signals 

from a 40 mm probe. The results for the four averaged RF ul-

trasound signals with a 10 mm lateral sampling interval had an 

F1 score ranging between 77-91% with a classification accuracy 

of 84% for all five finger flexions. This classification accuracy 

was similar when using the acquired 315 µm lateral resolution 

and decreases to a classification accuracy of 32% for no lateral 

resolution, when the full 40 mm width is averaged into a single 

RF signal. The results show motivation for using a wearable 

multichannel ultrasound device for predicting individual finger 

flexions for prosthetic devices. 

Keywords— Ultrasound RF signal acquisition, lateral resolu-

tion, finger motion classification, prosthetic hand control. 

I. INTRODUCTION  

Upper limb amputations have a significant impact on both 

the physical and mental aspects of daily lives for trauma-re-

lated amputees. Over one million Americans have suffered 

from trauma related upper limb amputations [1]. A study con-

ducted by the National Physical and Sensory Disability Da-

tabase in Ireland surveyed 148 people with major limb am-

putation found that 89% experienced some form of daily 

difficulty and 41% described that these difficulties interfered 

severely or extremely with their lives [2].  

Modern prosthetic industrial devices such as “i-digits” by 

Touch Bionics uses surface electromyography (sEMG) as the 

sensing mechanism to detect muscle activity to perform up to 

32 different hand gestures and grip motions [3]. Previous 

classification accuracies for using eight channel sEMG sig-

nals have been reported to have accuracies averaging around 

89% when classifying 15 different finger movement posi-

tions [4]. Recently ultrasound as an alternative control sensor 

has been found to produce superior results in classifying in-

dividual finger flexions and hand gestures. Sikdar et al. were 

able to obtain 98% accuracy implementing B-mode ultra-

sound imaging when classifying complete individual finger 

flexions of four fingers, claiming that ultrasound techniques 

are superior by being able to spatially resolve the deep lay-

ered tissue muscle activity compared to the limited specific-

ity from cross-talk occurring for multichannel sEMG [5]. 

McIntosh et al. used a multilayered perceptron neural net-

work with 15 nodes in the hidden layer and optical flow im-

age processing to extract spatial and time varying features 

from B-mode ultrasound imaging to differentiate between 

flexing at different joints and obtained an average accuracy 

of 97% when classifying discrete hand gestures [6]. Yang et 

al. used four A-mode ultrasonic transducers to achieve 95% 

accuracy in classifying 11 different hand gestures in real-time 

[7], however does not provide results for individual finger 

flexions proving to be useful for American Sign Language 

applications but undetermined for finger flexion prosthetic 

devices. 

These high accuracies produced in [5, 6] use a bulky con-

ventional ultrasonic clinical probe in B-mode imaging and 

may not be practical to implement in a prosthetic device for 

daily life activities outside clinics or laboratories. This paper 

presents a preliminary study that investigates spatial and tem-

poral feature extraction techniques to classify finger flexions 

using ultrasound. A clinical ultrasound probe is used to study 

an effect of reducing the lateral resolution on the classifica-

tion accuracy in motivation to explore a feasibility of weara-

ble ultrasonic sensors for prosthetic hand control [8].  

II. METHODS AND MATERIALS 

A. Data Acquisition Procedure 

Ultrasound data acquisition for this study was approved by 

Carleton University’s Research Ethics Board. A clinical ul-

trasound imaging system (Model PICUS from ESAOTE Eu-

rope, Maastricht, Netherlands) acquired 127 ultrasound RF 

signals using a 40-mm linear array probe with a lateral sam-

pling resolution of 315 µm per RF signal. Each RF signal was 
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sampled at 33.3 MHz (30 nsec), corresponding to an axial 

(depth) sampling resolution of 23.1 µm, assuming an ultra-

sound speed of 1540 m/s in soft tissues.  

The ultrasound data were acquired with a healthy male 

subject. The probe was setup to access the anterior side of the 

upper forearm held by a fixed apparatus shown in Figure 1. 

The probe was fixed 5-cm away from the wrist, and the 40-

mm wide probing surface covered most of the forearm width. 

Ultrasound RF signals were acquired during the individual 

motions of the thumb, index, middle, ring and pinky finger 

flexions. The RF signal pattern changed due to the tissue mo-

tions caused by muscle contractions corresponding to the 

combination of flexor digitorum profundus, flexor digitorum 

superficialis and/or flexor pollicis longus for the chosen fin-

ger flexion. Each acquisition had the hand positioned in a nat-

ural resting state, the chosen finger completed a full 180° 

flexion, then returned to the natural resting state, over a 6 sec-

ond duration. Such a motion was repeated to obtain three tri-

als per finger at 30 frames per second, totaling at 180 frames 

per recording. 

 

 

 
    

Fig. 1 Procedure setup with the ultrasound probe fixed laterally to the ante-

rior side of the upper left forearm. 

 

B. Signal Preprocessing and Feature Extraction 

The acquired ultrasound RF signal data were structured as 

illustrated in Figure 2 a) such that a single frame along the 

temporal (frame) direction, t-axis, is composed of 127 RF 

signals along the lateral (scan) direction, l-axis, with each RF 

signal composing of 1516 points along the depth (axial) di-

rection, d-axis. The acquired signals were then restructured 

into an 𝑁 number of new averaged RF signals confined to the 

40 mm width. The lateral sampling interval between the re-

constructed RF signals was increased to (127 / 𝑁) × 315 µm. 

The new RF signals were created by averaging every 127 / 𝑁 

group of acquired RF signals. Each ultrasound recording with 

l × d × t axes, was reduced from 127 × 1516 × 180 to 𝑁 × 

1516 × 180. For example, when 𝑁 = 4, the lateral sampling 

interval distance between each RF signal is changed from 

315 µm to 10 mm in the 40 mm lateral scan width. 

 

 
Fig. 2 Structure of the acquired ultrasound RF signal data a) with 127 lat-

eral RF signals and b) N averaged RF signals. 

 

Figure 3 shows signal processing and feature extraction 

techniques employed in this study, which were adapted from 

the method proposed by Yang et al. [7].  The acquired RF 

signals in a) were averaged to obtain the new RF signal which 

also is normalized and filtered using linear regression and 

Gaussian filtering in b). The envelope of the signal is then 

obtained using the absolute value of the Hilbert transform in 

c), and the amplitude is reduced using log compression in d). 

Linear regression is finally applied to every 15 data points to 

obtain 100 y-intercept 𝑏 and slope 𝑚 features in e). A total of 

100 × 𝑁 spatial features were extracted from each frame such 

that the 𝑏 and 𝑚 features would be used as a substitute to pix-

els acquired in standard B-mode imaging. 

 

 
Fig. 3 Preprocessing and feature extraction on a) raw RF signal acquired, 

b) normalized and Gaussian filtered signal, c) envelope of signal, d) log 

compression, and e) linear fit features extracted using linear regression. 
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C. Feature Processing and Pattern Recognition 

The extracted features were then processed to obtain tem-

poral information using these features. This addition allows 

for classifying the frame motions for the thumb, index, mid-

dle, ring, and pinky finger flexions as opposed to the original 

intensions for recognizing hand gestures by classifying dis-

crete hand positions [7]. 

Table 1 Feature set obtained for each frame. 

Feature Description 

𝑏 − 𝑏𝑟𝑒𝑓 Spatial intensity difference from resting frame (y-intercept) 

𝑚 − 𝑚𝑟𝑒𝑓 Spatial intensity difference from resting frame (slope) 

∆𝑏 Instantaneous change between frames (y-intercept) 

∆𝑚 Instantaneous change between frames (slope) 

 

The extracted 𝑏 and 𝑚 features were normalized to repre-

sent spatial changes from the rest state by subtracting the cor-

responding 𝑏 and 𝑚 features of the first frame for each frame 

in the recording (𝑏𝑟𝑒𝑓  and 𝑚𝑟𝑒𝑓). The first frame was chosen 

because all recordings had the hand start in a rested position. 

A novel method for extracting temporal features was ob-

tained by applying a first order difference equation to the 𝑏 

and 𝑚 features such that for each frame, the corresponding 𝑏 

and 𝑚 values would be subtracted by the previous frame’s 𝑏 

and 𝑚 values. 

 

 
Fig. 4 Flowchart of procedure to estimate classification accuracies. 

Figure 4 illustrates the flowchart of the procedure to clas-

sify the individual finger flexion activity and to estimate the 

classification accuracy. To reduce the number of computa-

tions, every three frames in each recording of 180 frames was 

treated as a single sample, resulting in a total of 900 samples 

(3 trials × 5 fingers × 180 frames / 3 sequential frames). From 

the three sequential frames in each sample, the minimum and 

maximum 𝑏-𝑏𝑟𝑒𝑓 , 𝑚-𝑚𝑟𝑒𝑓 , ∆𝑏, and ∆𝑚  values for all 100 

depth segments and 𝑁 averaged RF signals was extracted as 

the features resulting in 800 × 𝑁 total features per sample (2 

values as min & max × 4 feature set values × 100 depth seg-

ments × 𝑁 averaged RF signals). Linear discriminant analy-

sis was used to classify the data using three folds based on 

the trial number, such that the test data would consist of one 

trial recording of all 5 fingers and the training data would 

consist of the other trials. For example, to classify the frame 

motions for index trial 1 (6 seconds of recording), the training 

data would use the other two 6 second recording trials for the 

index finger along with two trails from the other four fingers, 

ensuring class balance when determining the prediction re-

sults for index trial 1. 

III. RESULTS AND DISUCSSIONS  

The classification accuracy is defined to be the percentage 

of the total number of correct finger predictions out of the 

total number of samples in the data set (900 samples total). 

The number of averaged RF signals was varied from 1 to 127 

and resulted in the following asymptotic trend in Figure 5 

with a coefficient of determination to be 0.9332. As the num-

ber of reconstructed RF signals (𝑁) is increased (across a 40 

mm width of the ultrasound probing surface), the classifica-

tion accuracy plateaus around 𝑁 = 4, which is represented as 

having a 10 mm lateral sampling interval between the RF sig-

nals, showing that the full lateral resolution may not be 

needed when predicting individual finger motions. 

 

 
Fig. 5 Classification accuracies verses number of reconstructed RF signals 
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Fig. 6 Confusion matrix for 𝑁 = 4 reconstructed RF signals. 

 

Looking at the specific example of when 𝑁 = 4 shown by 

the confusion matrix in Figure 6, the effective lateral sam-

pling interval between each reconstructed RF signal becomes 

10 mm and results in a classification accuracy of 83.89%. 

The precision and recall metrics are calculated in Table 2, 

which shows that the ring finger has the lowest calculated F1 

score at 0.7701 and the pinky finger to have the highest cal-

culated F1 score at 0.9135. 

Table 2 Precision and recall metrics for 𝑁 = 4 reconstructed RF signals 

Fin-

ger 

Precision 
 

TP

(TP + FP)
 

 

Recall 
 

TP

(TP + FN)
 

 

F1 Score 
 

2 × 
Precision × Recall

Precision + Recall
 

 

Thumb 93.9% 77.2% 0.847 

Index 74.0% 90.0% 0.812 

Middle 86.7% 83.3% 0.850 

Ring 79.8% 74.4% 0.770 

Pinky 88.5% 94.4% 0.914 

 

The results produced in this preliminary study gives evi-

dence that a high lateral spatial resolution may not be re-

quired for a possible wearable ultrasound system composed 

of a reduced number of transducers. However, when the ef-

fective lateral resolution is reduced to a single RF signal (no 

spatial variation in the lateral axis) the classification accuracy 

reduces significantly, giving evidence on the importance of 

being able to spatially distinguish deep layer muscle activity 

along the lateral axis. The features extracted in this study 

would be improved in the future by using more than just the 

envelope of the RF signals, and compared alongside tradi-

tional sEMG methods. 

IV. CONCLUSION 

Although these results may be limited in this preliminary 

study from acquiring data from only one subject, these results 

show motivation for using wearable multichannel ultrasound 

to predict individual finger flexions for prosthetic devices ra-

ther than using a more complex bulky ultrasonic imaging 

probe and system. Implementation of multiple wearable ul-

trasonic sensors [8] has a potential to perform individual fin-

ger flexions in a less costly and more practical manner than a 

convention clinical ultrasound probe and imaging system. 
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