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Abstract— In this paper, the surface electromyogram (sEMG)
signals acquired from linear surface electrode arrays, placed on
the long head and short head of biceps brachii, and brachioradi-
alis during isometric contractions are used to estimate force in-
duced at the wrist using an artificial neural network (ANN). We
extracted some features, in time and frequency domain, from
sEMG signals and used them as inputs to the ANN model. Dif-
ferent hidden layer sizes were considered to investigate its ef-
fect on the model accuracy and find the appropriate number of
neurons for our problem. Also, we studied the model accuracy,
where we used features individually as the model’s input. The
best accuracy, during train, validation and test, was obtained
for the maximum number of sEMG features.

Keywords— Surface electromyogram, High-density surface
EMG, and artificial neural network.

I. INTRODUCTION

An accurate muscle force estimation is desired in many ap-
plications such as design and control of powered prostheses,
medical rehabilitation, and sports medicine. Surface EMG
(sEMG), the spatial and temporal summation of dispersed
action potentials travelling along the muscle fibers, has been
widely used as a non-invasive method to map a relationship
between muscle electrical activity (represented by the sEMG
amplitude) and the generated muscle force [1–4].

Parametric and non-parametric approaches have been used
to estimate muscle force from sEMG signals [5–10]. The
parametric approaches use Hill’s muscle model [10], which
takes muscle activation level as an input to the model, and the
generated muscle force is calculated as the output. In non-
parametric modeling methods, polynomial functions, artifi-
cial neural networks (ANNs), linear regression, and fast or-
thogonal search (FOS) are used to capture the sEMG-force
relation, without requiring any knowledge about muscle and
joint dynamics [5–9]. ANNs have been used to estimate mus-
cle force or joint torque from EMG signals [11, 12]. The re-
lation between the EMG signal obtained from the biceps and
triceps and the isokinetic elbow joint torque was determined
by using a 3-layer ANN network [11]. The EMG signals, el-
bow joint angle, and velocity were used as inputs to the ANN
and the results suggested that the model was able to reliably
estimate the joint torque [11]. Mobasser et al. investigated the

use of two architectures of ANN for force estimation, under
isometric, isotonic and light load conditions [12]. The trained
ANNs were able to predict the highly nonlinear relation be-
tween the sEMG, the elbow angle and velocity, and the force
generated at the wrist [12].

In this study, features extracted from surface electrode ar-
rays with eight monopolar channels are used to map sEMG,
obtained from the elbow flexor muscles during flexion, to
the induced force at the wrist using the multilayer percep-
tron ANN. We extracted some features in time and frequency
domain from the sEMG signals which are explained in the
pre-processing section, as inputs to the ANN model.

II. METHOD

For this study, 13 healthy subjects (5 females and 8 males;
age 27±4 years) were recruited. Subjects provided informed
consent before participating in the experiment. The experi-
ments were conducted using the QARM, a single degree-of-
freedom (1-DOF) exoskeleton test bed. The QARM holds the
shoulder and wrist in a fixed position to constrain the elbow
flexion of the right arm to the horizontal plane while limiting
the contribution of the shoulder and forearm muscles to force
generation at the wrist. The elbow’s axis of rotation is aligned
with a pivoting aluminum bar, which can be locked in place
for isometric contractions.

The sEMG signals were recorded using 3 linear HD-
electrode arrays with 8 monopolar channels (5 mm spacing)
from the elbow flexor muscles; the long head and short head
of biceps brachii, and brachioradialis muscles. The fourth
electrode of each array was located on the SENIAM sensor
location recommendation for the biceps muscles [13]. For
the brachioradialis, the fourth electrode was placed at one-
third the length of the forearm measured from the elbow. The
sEMG data were collected using the Bioelecttronica EMG-
USB2 high density (HD) system, which sampled the EMG
data at 2048 Hz. The experiment was conducted for three dif-
ferent force levels, 20, 35 and 50% of maximum voluntary
contraction (MVC), at 90 degrees elbow joint angle during
isometric elbow flexion. MVC was measured at 90 degrees.
The duration of each contraction was 5 seconds. For each
subject, the data were collected in one session and three tri-
als. Appropriate rest periods were provided in order to avoid
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muscle fatigue. Force at the wrist (elbow torque) was mea-
sured using an ATI 6-DOF Gamma force/torque sensor with
a high stiffness of 9.1×106 N/m; force data were sampled at
1000 Hz.

A. Pre-processing

Differential sEMG signals were obtained by subtracting
neighboring monopolar signals with 5mm spacing. This re-
sulted in seven differential channels. Each differential chan-
nel was band-pass filtered from 10 to 500 Hz using a 4th-
order Butterworth filter. Then the sEMG signals were recti-
fied and smoothed by using a 300 point moving average filter
to obtain the linear envelope (LE) of signal and estimate sig-
nal amplitude.

Then, we extracted some of the commonly used features
for sEMG signal in time and frequency domain. The ex-
tracted features in the time domain were: the maximum, stan-
dard deviation and mean of the rectified and smoothed sEMG
signals. The signal after filtering (not the rectified-smoothed
signal) was used to extract two frequency domain features,
the mean frequency and the coefficient of the first compo-
nent (first PC) of principle component analysis (PCA) of the
sEMG signals. To compute the coefficients of the first PC, we
applied the FFT to each of the differential sEMG signals ac-
quired from the elbow flexor muscles. Then, the magnitudes
of the FFT’s were calculated and PCA was applied. The co-
efficients of the first PC, which represents the maximum vari-
ance of the data in the frequency domain, were used as fea-
tures. Finally, these features were used as inputs to the ANN,
where the network output is the induced force at wrist.

B. Force Estimation

ANN network architecture, which mimics the structure
of the neural system in the human nervous system, consists
of an interconnection of multiple layers of neurons and can
have more than one hidden layer, where all the outputs in
each layer are connected to the inputs of neurons in the next
layer [12]. The general diagram of the network is shown in
Figure 1.

As shown in Figure 1, the inputs to the ANN are the ob-
tained features of sEMG signals recorded from three linear
electrode arrays placed over the elbow flexor muscles, with
seven channels (5 (number of features)∗7 = 35 features per
muscle). The input data include all 105 features extracted
from the elbow flexor muscles of all 13 subjects at 90 de-
gree joint angle, and neutral forearm posture. The network
output is the estimated force induced at wrist. In the ANN, a
hyperbolic tangent sigmoid function and linear function were

Fig. 1: The general diagram of the ANN network.

used as activation functions for hidden layers and output layer
nodes, respectively.

C. Neural Network Training

One important parameter for ANN is the hidden layer size,
which can be considered as a method to increase the network
accuracy. Larger numbers of neurons in the hidden layer give
the network more flexibility to optimize its parameters to im-
prove the accuracy. Increasing this number, usually improves
the network’s training performance, but it does not necessar-
ily help the network generalization. Another possibility to im-
prove the model accuracy can be increasing the dataset size
for training. In this study, we investigated the effect of using
different number of neurons in hidden layer on force esti-
mation accuracy. We used Levenberg-Marquardt as a train-
ing function which is generally the fastest training function.
Also, we divided the input data randomly, so that 70% of the
samples are assigned to the training set, 15% to the valida-
tion set, and 15% to the test set. We increased the number of
neurons from 2 to 28 to investigate the effect of hidden layer
size on the force estimation accuracy. Root mean square error
(%RMSE) between the estimated (Festimated ) and measured
(Fmeasured) forces was used as an evaluation criterion, calcu-
lated by Equation 1, where N is the sample size.

%RMSE =

√
∑

N
i=1(Fmeasured,i −Festimated,i)2

N
×100. (1)

III. RESULTS AND DISCUSSION

In this study, three linear electrode arrays were used to
record sEMG signals, from the elbow flexor muscles, long
head and short head of biceps brachii, and brachioradialis
during isometric contractions, at 90 degree elbow joint angle.
The recorded data were processed to estimate the force in-
duced at wrist.The wrist force was estimated from the sEMG
signal acquired from the elbow flexor muscles using ANN.
For force modelling, we used the extracted features of sEMG
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Fig. 2: The effect of hidden layer size on force estimation accuracy, during
training, validation, and testing the network.

signal in time and frequency domain as inputs to the ANN,
and the network output is the induced force at wrist.

The %RMSE values for different number of hidden layer
neurons, during training, validation and testing the network
are presented in Figure 2. Each network was trained and
tested 10 times using different training, validation and test
sets, and the %RMSE valued were averaged.

Selecting an appropriate hidden layer size is a challenging
issue, since many factors should be considered such as ob-
taining lower errors for the train,validation and test phases,
avoiding overfitting, and developing a model which is not
overly complex. Based on Figure 2, it seems that ANNs with
fewer than 10 neurons are appropriate, because the validation
and testing errors are not improving, as hidden layer size in-
creases to more than 10. The results of estimated force versus
the measured force for three different phases; training, vali-
dation and testing, using an ANN with the hidden layer size
of 5 are presented in Figure 3. The %RMSE values for the
train,validation and test phases are 4.54, 7.95, and 6.21 re-
spectively.

In this study, we developed a model to estimate force based
on the sEMG signal, across all subjects, so that the model’s
input was a feature set extracted from all subjects’ data. How-
ever, in other pattern recognition studies, where sEMG was
used for classifying the motion [14] or for force estimation
[6, 7, 12, 15], their models were subject dependent and were
developed for each subject individually.

Also, we investigated the effect of using features individu-
ally on the accuracy of the ANN. For each feature, we trained
the ANN, 10 times and we considered the different number
of neurons in the hidden layer, from 2 to 10. Our results are
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Fig. 3: Estimated force vs the measured force for three different phases;
training, validation and testing, for the hidden layer size of 5.
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Fig. 4: The effect of using each feature separately on force estimation
accuracy, during training, validation, and testing the network. The solid line
represents the training phase, while the dash-dotted line (-.-.) represents the

validation, and dotted line (....) shows the testing phase.

presented in Figure 4, where the solid line shows the training
phase for using each feature separately, for different hidden
layer size. The dash-dotted line and dotted line represent the
validation and testing phases respectively. According to Fig-
ure 4, it is clear that different features results in different force
estimation errors, and that the maximum and mean EMG fea-
tures gave lower %RMSE values for training, validation and
testing phases compared to other features. This result indi-
cates that certain features are able to estimate the output more
accurately compared to other features, which emphasizes the
importance of feature extraction.

Different combinations of these features might affect the
force estimation accuracy differently. Therefore, as a future
work, feature selection should be done to find the best sub-
set of features that leads to more accurate force estimation.
In addition, channel selection can be considered as another
issue that might have an impact on the model accuracy. In
this study, we used 3 linear electrode arrays with 7 bipolar
channels per muscle, which gives some redundant informa-
tion. We have suggested that using a smaller number of chan-
nels is able to improve the force estimation accuracy, if those
channels are selected appropriately [15].

IV. CONCLUSION AND FUTURE WORK

As a conclusion, we used features extracted from the
sEMG signal acquired from the elbow flexor muscles to esti-
mate force induced at the wrist using the ANN model. Our re-
sults indicated that the hidden layer size affects the accuracy

of the model. Generally, increasing the number of neurons,
more accurate estimation would be obtained during train, val-
idation and test phases.However, overfitting and complexity
should also be considered in determining hidden layer size.
Also, we investigated the impacts of using features individu-
ally on the model accuracy, where the maximum and mean of
sEMG showed the lowest errors. Therefore, feature selection
is an important step to be considered in order to select those
features which are the better representatives of the input.

As a future work, we will work on feature selection algo-
rithms to select more appropriate features and their combina-
tions in terms of improving our model accuracy for estima-
tion.
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