Applying Human Factors Methods to Inform the Implementation of a Novel Medical Device

R. Chan¹ and G. Jasechko²

¹ University of Victoria/Biomedical Engineering, Undergraduate Student, Victoria, Canada
² Island Health/Biomedical Engineering, Manager, Victoria, Canada

Abstract — Usability testing was performed to identify usability problems with a medical device designed to detect respiratory depression. Personnel lacking formal human factors training developed and implemented the test plan. Quantitative usability test analysis involved measuring task completion time, success rate, and usability issue frequency. Qualitative data was collected via visual observations of the participants. Significant usability problems were identified with the following tasks: entering patient information, opening alarm settings, and adjusting alarms. The test results were used to improve the hospital’s clinical training.

Keywords — Human Factors, Usability Testing.

I. INTRODUCTION

In 2017 Island Health purchased a monitoring device to provide early warning of respiratory depression in some of their medical/surgical wards. As the first significant example of continuous monitoring for the majority of the clinical staff in these care areas, it was deemed important to trial and evaluate the equipment and associated procedures prior to implementation. In addition to a clinical trial (field study) expected to obtain feedback related to the utility of the clinical procedures drafted to direct practice, usability testing was conducted to provide a higher degree of objectivity and to identify usability problems. [1]

The organization had no Human Factors (HF) Specialist available to plan or implement usability testing; a co-op student enrolled in the fourth year of an undergraduate program in Biomedical Engineering was assigned the project. Knowing that a well-designed HF assessment can expose characteristics of a device that cause user errors or reduce effectiveness, efficiency, and user satisfaction [1], the objective was to obtain information to:

- Confirm that staff could effectively use the device with little or no model-specific training.
- Improve the script to be used during clinical training.
- Provide feedback to the device manufacturer.

II. METHODS

A test plan was established using published resources [2, 1] and telephone consultation with an individual with prior experience in applying usability testing (Mr. Wrae Hill). Usability testing involves observing end-users while they complete simulation scenarios using the device in situations that would commonly be encountered if the device was implemented [1].

Documents supporting the usability tests were developed. These included a consent form, data collection spreadsheet, visual presentation (orienting the viewer to the device), moderator script, scenarios, the usability test plan, and post-test questionnaire.

The anticipated user group consisted of Registered Nurses (RNs) at the Royal Jubilee Hospital (RJH) from the Medical/Surgical Units. The goal was to recruit RNs for the testing who met these criteria:

- Full-time or part-time employment as an RN at RJH
- At least 1 year of experience as an RN
- Currently assigned to a medical/surgical unit

The usability test was designed to answer the following questions about the device:

- How easily did RNs learn to use the device?
- How quickly were RNs able to perform basic tasks on the device?
- What are the most prominent mistakes and the severity of the mistakes?
- What were the RNs overall experience with the device?
- Do RNs understand the purpose/value of the device?
- Are there any safety issues with the device?

The test procedure for each participant session followed these steps:

- The Moderator explained what the usability test was for and gave general guidelines (e.g. asked participant to speak out loud while using the device).
- The participant signed the consent form; Moderator started video/audio recording.

The 42nd Conference of The Canadian Medical and Biological Engineering Society
La Société Canadienne de Génie Biomédical
Moderator provided orientation training for device. This training was designed to familiarize the participant with the device, but not provide specific knowledge regarding the device operation.

The participant answered pre-test demographic questions.

The participant read aloud the background information of the scenario and was given the list of tasks. The participant performed the tasks until completion or frustration. This process repeated until all scenarios were completed.

The participant completed the post-test questionnaire.

The moderator asked questions that arose while observing the participant and debriefed the participant.

The participants were asked to perform 13 tasks:

1. Turn on machine
2. Apply electrodes
3. Enter patient information
4. Start basic monitoring
5. Accept default alarms
6. Interpret status
7. Open alarm settings
8. Adjust alarms
9. Open settings
10. Adjust respiratory trace
11. Adjust alarm delay
12. Remove electrodes
13. Power down device

The test data included observer notes logged during the test sessions, questionnaires, and audio/video recording of each test session recorded from an “over-the-shoulder” view such that the user-screen interactions could be seen and the participant voice could be heard. This data provided the necessary quantitative data values for usability metrics outlined:

- Success rate of completion
- Time to complete the tasks
- Frequency of errors
- Types of errors
- User satisfaction

Data collected was managed and analyzed using a spreadsheet adapted from Rosenberg [3] to calculate the severity of each issue. Severity is a measure of how important it is to fix each usability issue, with high importance corresponding to high importance. Severity takes into account the importance of the task, the importance of the user interface (UI) screen, the frequency of the issue, and the impact of the issue. Severity is calculated with following formula:

\[
\text{Severity} = (\text{Task Importance}) \cdot (\text{UI Importance}) \cdot (\text{Frequency}) \cdot (\text{Impact})
\]

Some subjectively is unavoidable in defining the importance to tasks and user interfaces, and the justifications / rationale for each decision were documented to support arguments for product improvements.

Five participants were recruited for the usability test including an RN with two years’ experience, two RNs with 20 years’ experience (one had a previous orientation to the device from the vendor’s representative, the other had not), a certified Nurse Educator with 11 years’ experience, and a Clinical Nurse leader with 30 years’ experience.

III. Results

A comprehensive list of usability issues was created by viewing the simulation test videos. Each identified issue was assigned a unique identifying number, a scope (i.e. the screen where it happened), the task that it hindered, and an impact level. The videos were viewed again and the participants for which each issue occurred were logged. Lastly, the severity of each issue was calculated.

Table 1 lists the issues identified via this process.

<table>
<thead>
<tr>
<th>Issue</th>
<th>Task</th>
<th>Issue description</th>
<th>Impact</th>
<th>Frequency</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Turn on machine</td>
<td>Required 2+ button presses to turn on machine</td>
<td>Minor</td>
<td>80%</td>
<td>25.6</td>
</tr>
<tr>
<td>2</td>
<td>Apply electrodes</td>
<td>Did not attach patient cable to machine correctly</td>
<td>Major</td>
<td>20%</td>
<td>9.6</td>
</tr>
<tr>
<td>3</td>
<td>Enter patient info</td>
<td>Attempts to type patient data into disabled input field</td>
<td>Minor</td>
<td>80%</td>
<td>25.6</td>
</tr>
<tr>
<td>4</td>
<td>Enter patient info</td>
<td>Closes keyboard</td>
<td>Major</td>
<td>20%</td>
<td>9.6</td>
</tr>
<tr>
<td>5</td>
<td>Enter patient info</td>
<td>Attempts to select disabled input field 3+ times</td>
<td>Major</td>
<td>80%</td>
<td>38.4</td>
</tr>
<tr>
<td>6</td>
<td>Enter patient info</td>
<td>Attempts to move cursor with tab/return</td>
<td>Suggestion</td>
<td>40%</td>
<td>6.4</td>
</tr>
<tr>
<td>7</td>
<td>Enter patient info</td>
<td>Took longer than 120s to activate input fields (may require hint)</td>
<td>Blocker</td>
<td>20%</td>
<td>12.8</td>
</tr>
<tr>
<td>8</td>
<td>Accept default alarms</td>
<td>Confusion expressed about Minute Ventilation Marker</td>
<td>Suggestion</td>
<td>60%</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Four issues had a severity level greater than 30.0: #5, #10, #12 and #14. Issue #5 involved difficulty entering patient data into the device and issues #10, #12, and #14 involved confusion with adjusting alarms. The common intervention method for a poorly designed device is to implement a more comprehensive training protocol [4]. Not only is training expensive due to the time requirements of education staff and practitioners, it has mixed results for improving patient safety [5].

Figure 1 shows the distribution of total issue severities per task. The top three tasks with the highest total severity were adjusting alarms, entering patient information, and opening alarm settings. The device design required patient information be entered before patient monitoring could begin, and appropriate alarm settings were critical to prevent alarm fatigue.

![Fig. 1 Total Severity per Task](image)

Based on the analysis of observed usability issues, the authors produced a narrated video compilation of usability errors; the video was an effective communication tool when presenting the findings to the manufacturer’s representatives and to the clinical educators as they were preparing the training material. The video illustrated some of the qualitative data collected; the participants’ frustration, confusion, and misinterpretations provided insight into the underlying causes of the poor quantitative results.

Table 2 shows the time each of the five participants required to complete the tasks – “INC” means they were unable to complete the task without assistance.
The authors would like to acknowledge the support and encouragement of Wray Hill who reviewed the usability test plan.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES