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Electrical alternans in cardiac Action Potential Duration (APD) have been shown to be a precursor
to arrhythmias and sudden cardiac death (SCD). In this work, we study the annihilation of alternans
based on an eletro-mechanical model and using boundary pacing and spatially distributed control.
The mathematical equations are based on the Nash-Pafilov model (NP), This model includes an
additional variable to represent the active stress which is responsible for mechanical deformation and
is coupled to the stress equilibrium equation, describing the tissue’s mechanics model. An algorithm
that combines boundary pacing control and spatially distributed control to annihilate the alternans
is implemented using NP model in the limit of small deformation.

I. INTRODUCTION

Electrical alternans is a physiological phenomenon
that is a beat-to-beat oscillation (alternation) of the
cardiac Action Potential Duration (APD), which is
defined as the period of time during which the action
potential exceeds the threshold value. Alternans have
been shown to be a precursor to arrhythmias [1, 2]
and sudden cardiac death (SCD), which is the most
common cause of death in the industrialized world.
Experimentally, APD alternans is typically observed
during rapid pacing at fixed pacing frequency so that
beyond a critical pacing frequency the normally periodic
response is replaced by a sequence of long and short
APDs which is manifested as a variation in the APD
(see Fig. 1), the diastolic time interval (DI) in Fig. 1 is
defined as the period of time during which the action
potential is below the given threshold value.

FIG. 1: Time evolution of transmembrane potential in
the presence of alternans.

The electrophysiological changes initiate mechani-
cal contraction in the cardiac tissue via excitation-
contraction coupling (ECC) while changes in tissue

length affect electrophysiological properties via mecha-
noelectrical feedback (MEF) [3, 4].

Nash-Panfilov (NP) model [5] accounted for electri-
cal and mechanical properties of cardiac tissue by intro-
ducing a third variable Ta into the Aliev-Panfilov (AP)
model [6], which used two variables to provide a descrip-
tion of excitation for cardiac cells, to link the exitation
with contraction. NP model is studied under conditions
of small deformations, in which stress equilibrium equa-
tion is reduced into linear elasticity equation.

In this work, we develop a control algorithm that com-
bines boundary pacing control and error based feedback
control strategy which perturbs the conduction tensor of
of NP model to annihilate alternans. Boundary pacing
control can be realized by adjusting the stimulation pac-
ing interval subjected by a cardiac system. An electrical
boundary control strategy has a finite degree of control-
lability, such that alternans stabilization in cardiac tis-
sues > 1 cm cannot be achieved [7–9]. To overcome the
limitation in controllabity, we added an error based con-
trol algorithm, that perturbs conduction tensor of the
transmembrane potential of the model in a localized re-
gion of the tissue. Perturbing conduction tensor alters
the tissue’s electric wave profile, and consequently the
APD. Through numerical simulations, we demonstrate
that the control algorithm can successfully annihilate al-
ternans in the whole cable of cardiac cells.

The outline of the paper is as follows. In section II
we present the NP model. section III is devoted to the
control and numerical realization of the NP model, and
annihilation of cardiac alternans.

II. MATHEMATICAL FORMULATION

The NP mechanical model is based on the finite
elastic deformation theory, the reader can refer to [10].
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A. Generalities
The Nash-Panfilov (NP) model for the transmembrane

potential propagation with electromechanic feedback [5]
is given by:
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All parameters and variables are dimensionless, and
f(V, r) = KV (V −a)(1−V )−rV −Ig. V is the membrane
potential, r is the recovery variable, and a is the thresh-
old parameter. D = 1 is the diffusion constant, Xk are
the fixed reference coordinates, xk are the material co-
ordinates, CMN is the right Cauchy-Green deformation
tensor, SMN is the second Piola-Kirchoff stress tensor,
C = det(CMN ), it is only present during stretch (i.e.

when
√
C > 1), The active tension Ta, increases with

V , with a delay fixed by ε(V ), given by 0.1 for V < a
and 1.0 for V > a. kTa is a parameter that controls
the amplitude of Ta, the parameters ε, k, µ1 and µ2 have
no clear physiological meaning, but are fitted to repro-
duce the key characteristics of the cardiac tissue [5]. The
mechanoelectric feedback is achieved through a stretch-
activated current .

Ig = Gs(V − 1)(
√
C − 1) (5)

The Mooney-Rivlin isotropic model is introduced to
describe the mechanical properties of the tissue. The
total stress is the sum of an active and a passive compo-
nent.
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The strain energy function, W (I1, I2), for the Mooney-
Rivlin model [10] is given by:

W (I1, I2) = c1(I1 − 3) + c2(I2 − 3) (7)

I1 and I2 are the first, and the second invariants of the
right Cauchy-Green deformation tensor, c1 and c2 are
material constants.

B. Reduction of NP in 1D
Let xk = Xk + uk, uk is the displacement variable.

In the limit of small deformations, the case where active
tension is small compared with passive stress, we will

assume
∂uk
∂XM

� 1, u � 1, and Ta � c1, c2, the elastic

FIG. 2: Amplitude of alternans of NP model. The
tissue is paced 62 time units, at which the amplitude of

alternans grow until control is applied at t = 4000.

equation (4) can be written as c1∇2u + c2∇(∇ · u) +
∇Ta = 0. The last equation can be written in 1D as

c̃
∂2u

∂X2
+
∂Ta
∂X

= 0 (8)

where c̃ = c1+c2. In 1D, the deformation gradient tensor
F, the right Cauchy-Green tensor C, and the conduction
tensor D =

√
CC−1 can be written as

F =

F (X) 0 0
0 1 0
0 0 1

 , C =

F 2(X) 0 0
0 1 0
0 0 1

 (9)

D =


1
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For small deformations, we can linearize F (X) as

F (X) = 1 + u(X), (11)

III. CONTROL AND NUMERICAL
REALIZATION

In this section, we solve Eqs. (1) - (3), and (8) of
the NP model, in the limit of small deformation in 1D,
to demonstrate alternans annihilation using a control
algorithm that combines boundary pacing control and
spatially-distributed control. A one dimensional cable
of length L = 5 cm is considered. As outlined in [5], to
determine the scaling factor for the dimensionless time
unit, the dimensionless APD obtained from the model
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FIG. 3: Time evolution of membrane potential variable before (a), and after (b) the control is applied.

must be compared to experimental measurements. Scal-
ing factors ranging from 5 ms to 14 ms have been re-
ported [6, 11]. For the dimensionless space variable, 1
dimensionless unit corresponds to 1 mm [6]. The ex-
citation characteristics of the medium was solved using
a semi-implicit time integration scheme with ∆t = 0.02
and ∆X = 0.1, and we determine the deformation me-
chanics of the tissue using second order finite difference
scheme. All model parameters used in the simulation are
given in Table I. The tissue is paced at the boundary

TABLE I: Parameter values for the electromechanical
model

k = 8 a = 0.05 ε = 0.1 µ1 = 0.12
µ2 = 0.3 kTa = 0.01 c̃ = 16 g = 1.6

to its basic pacing cycle length (PCL), named τ , such
that the APD alternates. For the given parameters, τ is
found to be 62 time units. Under constant PCL, the am-
plitude of alternans grows. The APD is measured from
the instant V crosses the threshold value during the de-
polarization phase, until the instant it falls below this
value during the repolarization phase. The threshold
value is chosen to be 0.02 (in dimensionless units). The
amplitude of alternans, an(ζ), is defined as the difference
between two consecutive APDs. That is, at a given point
in space ζ, an(ζ) = (APDn(ζ)−APDn−1(ζ))(−1)n.

Stabilization of alternans, (see Fig. 2), can be achieved
by coupling boundary pacing control and spatially-
distributed perturbation control. The boundary pacing
control is determined by the dynamic control scheme

Tn = τ + γ(APDn(ζ = 0)−APDn−1(ζ = 0)) (12)

Tn represents the amount of time between the n-th and
(n+1)-th stimuli. γ is a tunable constant which define

feedback gain of the APD alternation of the basic pacing
cycle. In the simulation, γ = 0.325. For positive γ the
second term on the right-hand side of Eq. 12 has the
effect of lengthening Tn if the difference of two consec-
utive APDs is positive. As a result, the following DI,
and hence the next APD at the (n+1)th beat, is larger
using this control scheme. It has been demonstrated by
[7, 9, 12] that this pacing control can suppress alternans
for the region from the pacing site up to a finite distance
(≤ 1cm), beyond that the instabilities grow along the
tissue’s length and the tissue demonstrates discordant
type of alternans but with higher amplitude. A spatially-
distributed perturbation control is implemented as fol-
lows

∂V

∂t
=

∂

∂X
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1

F (X)
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)
∂V

∂X

)
+ f(V, r)(13)

en(t) = (APDref −APDn) (14)

where β is the controller gain. In the simulation, β =
0.05. The controller acts after the electrical boundary
feedback controller stabilizes a finite part of the tissue’s
length (≈ 1cm). This basic full state feedback algo-
rithm which takes the error en(t) (defined in Eq. 14),
generated from the difference between APDs references
(APDref) registered at the time t∗ (=1479, time we reach
basic pacing cycle τ), and the APDs at the n-th stim-
ulus (APDn), over the length of area under spatially-
distributed control, provides a control signal which is
applied over the region 1.5-3 cm. The control signal is
active only when en(t) > 0, meaning that the controller
only acts on the short-APD, and is turned on when the
membrane potential crosses the threshold value at the
next APD. This control action alters the tissue’s mem-
brane potential through perturbation in D is reflected
in the membrane potential APD. As shown in Fig. 3,
the membrane potential alternate when the control is
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FIG. 4: Time evolution of mechanical deformation variable before (a), and after (b) the control is applied.

not applied, Fig. 3b, and annihilated, Fig. 3b after the
control is applied. As shown in Fig. 4, the mechani-
cal deformation variable alternate when the control is
not applied, Fig. 4a, and annihilated, Fig. 4a after the
control is applied. Although the spatially distributed
control is only applied over a localized region of the tis-
sue (1.5 cm), it successfully annihilate alternans along
the tissue. Thus, using a model based on the mechanical

and electrophysiological properties of the cardiac tissue,
it is clearly shown that electrical pacing and spatially
distributed perturbations can be used to manipulate the
electrical APD in order to suppress alternans.
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