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Abstract

With the method of characteristics,
pulsatile pressure and velocity pulses are com-
puted in a tapered and non-branching distensible
tube simulating the aorta. The elastic modulus
of the tube is assumed to vary spatially and with
pressure. The relationship of pressure and dia-
meter is an exponential function similar to the
observed tension-length diagram. The model is
also applied to a constricted tube simulating
coarctation of aorta. Calculations show an al-
teration of pressure and velocity pulses distal
to the stenosis.

One of the distinctive characteristics
of propagation in the aorta is the change in
shape of the pressure and flow pulses as they
move from the heart to the periphery of the vas-
cular system. Several models (1,2,3,4,5) have
been proposed for the pressure flow relationship,
yet in these models the elastic modulus is con-
sidered pressure independent. It is the purpose
of this paper to describe a model in which the
Young's modulus is not only a function of pres-
sure but also varies spatially. The pressure-
flow patterns are presented in both normal aorta
and aortic coarctation with different degree of
constriction.

The basic assumptions needed to develop
the mathematical model for claculation of pres-
sure and velocity are:

1. One dimension flow. Flow is given by average
velocity over the cross section.

2. The ratio of thickness of the tube wall to
diameter of the tube in unstressed state
(ho/Do) =0.1.

3. The wall material is incompressible. This
implies a Poisson's ratio of 0.5.

4. The diameter of the tube is given by

D(xJ=D°-Dbin x-a D(xy)exp(-B(x-X4)2)

in which D,, D; are the diameters of the tube
at x=0 and x=L
D (xa) is the diameter at x=xa and a is a
constriction factor.

5. Young's modulus E (x.t) varies with pressure
and distance. i.e.

E(x,t)=KP(x,t)+E,(X)

where E (x) is the elastic modulus during
unstressed state. k is constant of propor-
tionality.

6. Shear stress at the tube wall due to flow is
proportional to V2 and is opposite to the
direction of flow.

7. At time=0, an initial flow entering at n=0
and a pressure difference of 0.5 mmHg. at
x=L are assumed.

Also from the equation of continuity
and momentum equation for a segment of the tube:
the following equations are obtained.
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The above two equations comprise a
system of two nonlinear hyperbolic partial dif-
ferential equations in two dependent variables,
P and V. These equations may be solved numeri-
cally using the method of characteristics.

Fig. (1) shows the input pressure at

x=0 and the computed pressure at x=20 cm. and 40
can. The peak value of the pressure pulse in-
creases and the leading edge of the pulse becomes
steeper as it propagated from the proximal to the
peripheral part of the arterial system.

The shape of the pulse also becomes
narrower. The sharp incisura disappears and the
dicrotic notch and a dicrotic wave appears. In
contrast, the amplitude of the velocity pulse
(Fig. 2) decreases and its shape becomes some-
what broader. Its leading edge becomes less
steep. The backflow component also becomes
smaller.

The progressive change of pressure and
velocity pulse immediately distal (5 cm. below
the constriction) to the constricted region are
shown in Fig. (3) and Fig. (4). These pressure
pulses are computed in a constricted tube without
dilatation. The curves exhibit a progressive
reduction in amplitude and a retardation of
anacrotic limb. The pulse contour, instead of
being narrow, is broad and tends to be rounded.

With moderate constriction, the systol-
ic pressure no longer exceeds aortic pressure as
is normally the case, it either equals it (at 36%
reduction) or is less with further constriction.
The dicrotic wave becomes less and less prominent.
Similar to the pressure pulse, the velocity
amplitude diminishes with progressive degree of
constriction. The controur tends to be broadened
with reduction of backflow component:
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Fig. (3) The computed pressure pulses at 20 cm.
6 I I 1 1 station. The percentage indicates
1 2 3 4 reduction of cross-section area at
. . . . 15 cm. station.
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Fig. (1) Input pressure and the computed pres-
sures as function of time at 3 ©

locations down the model aorta.
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) Fig. (4) The computed velocity pulse at 20 cm.
station due to various degrees of
constriction.
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