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Abstract - Surface recordings of
somatosensory evoked potentials pose a
challenging problem as the desired signal is
obscured by stimulus artifact.  A widely used
approach for artifact reduction is adaptive
noise cancellation, where an adaptive filter is
used to map a primary signal to a reference
signal.  A major drawback of this technique is
the dependency on temporal generalization.
We propose a novel approach to artifact
reduction that attempts to learn the process of
artifact generation as the stimulus pulse
amplitude increases.

INTRODUCTION

     Somatosensory evoked potentials (SEPs)
propagate through central or peripheral nerves in
response to external stimulation and convey
valuable information about the integrity of the
nervous system.  An electrical pulse can provide
the external stimulation required to evoke a SEP,
if the magnitude is above a certain threshold
level, known as supra-threshold stimulation.  A
SEP is not evoked if the level of the stimulating
pulse is below the threshold level, known as sub-
threshold stimulation.  Once evoked, the SEP
propagates along the nerve away from the
stimulus and can be measured either invasively
with needle electrodes or a nerve cuff, or non-
invasively using electrodes at the surface of the
skin.  The non-invasive technique is preferable
because it is more comfortable for the patient
and has a reduced risk of infection, but poses a
challenging measurement problem as the
observed SEP signal is often obscured by
stimulus artifact (SA).  The SA is a product of
the stimulation process [7], which is difficult to
separate from the SEP because the SA is much
larger than the SEP, is synchronous with the
SEP, and overlaps the SEP in both time and
frequency [4,5,7,10].  Thus, time windowing and
frequency filtering cannot be used as a means of
removing SA without distorting the SEP.   The
SA is also coherent with the SEP and therefore
cannot be reduced with ensemble averaging
[6,8].

     A widely used approach for post-
measurement SA reduction is adaptive noise
cancellation [3,9].  In this approach, two
channels of data are acquired: the primary
channel, which contains the SEP corrupted by
the SA, and the reference channel, which
contains only the SA.  Using the reference
channel as the input to the adaptive filter, the
filter predicts the SA in the primary channel.  If
the prediction is accurate, subtracting the
adaptive filter output from the primary channel
results in a clean SEP.
     In order for the adaptive filter to properly
predict the SA in the primary channel from the
SA in the reference channel, the adaptive filter
must be trained first.  The training technique
commonly used is known as segmented training
[9], which only uses the first portion of the
primary and reference channel waveforms.  This
is to ensure that the primary channel does not
contain the SEP during training; otherwise the
adaptive noise canceller would eliminate both
the SA and SEP.  Once training is complete, the
entire reference channel waveform is provided to
the adaptive filter to predict the entire SA in the
primary channel.  With segmented training, not
only does the adaptive filter have to learn the
relationship between the reference and primary
channel but it must also generalize in time to
portions of the waveform that were not provided
during training.
     The need to provide temporal generalization
is a major drawback of the segmented training
technique.

METHODS

     This investigation proposes a novel approach
to SA cancellation, addressing both the challenge
of learning the nonlinear relationship between
SA in the reference channel and SA in the
primary channel as well as the problem of
temporal generalization.  Instead of mapping a
reference signal to a primary signal, an adaptive
filter is used to learn the relationship between the
stimulus pulse amplitude and the corresponding
SA waveform generated.



     The input to the adaptive filter is the
stimulating pulse, the target is the SA waveform
observed at the recording site, and the output is
an estimate of the SA waveform observed at the
recording site.   The first task of the SA
cancellation scheme is to learn the process of SA
generation during sub-threshold stimulation,
where only SA is present.  It has been shown
[5,7,9] that the SA changes in a nonlinear
fashion as the stimulus level varies, since it is
known that the impedance of the skin/electrode
interface changes with current density.  We
propose an adaptive system that will learn the
nature of the nonlinear change in SA as the level
of stimulus is increased from a small value, to
levels that approach but do not exceed the
stimulus threshold.
     Because supra-threshold responses contain
SEPs they cannot be used for training.  Indeed, it
is the supra-threshold response that is used to
recover the SEP, once the adaptive element has
been trained to learn the relationship between the
stimulus pulse and the resulting SA.  The
assumption here is that, having seen many (five
to fifteen) examples of stimulus pulse/SA pairs
in the sub-threshold training set, the adaptive
element will be able to generalize this
relationship to stimulus pulse/SA pairs at supra-
threshold levels.  This, we believe, is a
reasonable assumption, as there is no reason to
expect that the process of SA generation at
supra-threshold levels differs from that at sub-
threshold levels.  This approach has some
distinctive advantages to the segmented training
approach:

1. The entire sub-threshold waveform is used
in adaptation.  This means that no temporal
generalization is necessary;

2. Several sub-threshold level stimulus pulse /
SA pairs are given to the adaptive element,
as compared to a single example sub-
threshold in the segmented training
approach.  This allows the adaptive element
to learn much more about the nonlinear
nature of SA generation; and

3. Occasionally, the interference due to the SA
can exhibit odd characteristics, such as an
extended DC offset or oscillatory behavior.
Previous cancellation methods are ill-suited
to remove these effects, but the proposed
approach should be capable of modeling,
and therefore, removing this interference.

     The choice of adaptive element is essential to
the success of the proposed method.  The

problem is that of modeling an impulse response
of a system that changes nonlinearly with the
amplitude of the impulse.  This suggests a class
of adaptive systems collectively referred to as
dynamic neural networks, which explicitly
incorporate memory in their architecture.  These
dynamic networks are particularly well suited to
modeling temporal structure in dynamical
systems.  The most widely used form of dynamic
neural network is the time-delay neural network
(TDNN), which incorporates memory in the
form of a filter structure in the input layer of the
network.  The TDNN architecture has shown
exceptional performance as pattern classifier and
as a time-series predictor [12,11,2].  The
architecture and the training regimen of dynamic
structures under investigation must be optimized
for this application.  This includes the number of
hidden layers, the number of neurons in these
layers, the training algorithm, and schemes that
may enhance performance, such as weight
elimination and data pre-processing.
     Prior to applying the proposed method to
actual data, a simulated data set was used [1].
This was done to develop a preliminary
architecture for the TDNN estimator and to
quantify the estimation error since this is not
possible with real data, as the true SEP
waveform is unknown.  The data were applied to
a two-layer TDNN and the performance measure
of the residual error of the SEP waveform after
SA cancellation was calculated to validate the
effectiveness of the TDNN to cancel SA.  The
performance was then compared to the
segmented training technique [3], with a neural
network adaptive element.
     After the analysis on the simulated data, real
data were acquired from seven healthy subjects
with no known neuromuscular disorders, both
female and male, between the ages of 20 and 33.
The general setup of SEP acquisition is depicted
in Figure 3, in this case illustrating the
measurement of a SEP from the median nerve.
     At least ten SA waveforms were acquired at
sub-threshold stimulation for each subject as the
stimulus pulse amplitude increased by 1mA.
Between five and ten SA waveforms were
acquired at supra-threshold stimulation for each
subject as the stimulus pulse amplitude increased
by 2mA.  The data were sampled at 25.6KHz and
400 exemplars were collected for each stimulus
level.  The results were then ensemble averaged
to reduce most of the uncorrelated noise,
including EMG, instrumentation noise, and 60Hz
interference [6,8].



Figure 3 – SEP acquisition, and SA interference

RESULTS

     To assess the performance of SA reduction in
the stimulated data set, a qualitative analysis was
conducted on the output waveform. The original
SEP waveform was subtracted from the SEP
waveform acquired after filtering and the error
produced was plotted.  Results when using both
approaches is shown in Figure 5.

(a)

(b)

Figure 5 – SA cancellation on simulated data:
(a) segmented training technique (b) TDNN

 It can be seen that the TDNN was more
successful in reducing SA than the segmented
training technique because the error was closer to
zero when using the new training scheme.
     The mean squared error (MSE) between the
known SEP and the predicted SEP was
computed using the proposed method and the
segmented training technique. The new
approach, using SA waveform modeling,
outperformed the segmented training approach
for every level of stimulus.  As one might
expect, as the stimulus amplitude increases, both
schemes experienced higher MSE, as they must
generalize SA behavior at stimulus levels that are
further from what they have seen during training.
     Preliminary results demonstrating the ability
of the TDNN to cancel SA on real data are
shown in Figure 6.  So far, it can be seen that this
technique does quite well in reducing SA.   The
MSE cannot be computed on real data, as the
true SEP waveform is not known.  Assessment
can take the form of a subjective visual
inspection, or surrogate quantitative methods [9].

Figure 6 – SA cancellation on real data

DISCUSSION

     The non-linear nature of the process of SA
generation justifies the use of dynamic adaptive
filters for the purpose of learning this process.
The TDNN has shown to have better SA
cancellation abilities than the segmented training
technique on simulated data for all of the
stimulus amplitudes.
     A three-dimensional representation of the
process of SA and SEP generation is shown in
Figure 7.  The non-linear nature of the SA
generation can be seen on the right of the figure
as the stimulus amplitude varies.  It is interesting
to note that as the stimulus pulse amplitude
during supra-threshold stimulation, the SEP
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increases in amplitude, signifying that a greater
number of nerve fibers are being activated.
Also, as the stimulus pulse increases, the onset of
SEP arrives earlier in time, indicating that some
of the nerve fibers activate earlier.

Figure 7 – Process of SA generation

From the results seen thus far, the TDNN
approach to SA cancellation appears to work
very well.  Further analysis must be done on the
data to see whether this method of SA
cancellation is much better than that of the
segmented training technique.

CONCLUSION

     A novel approach to SA cancellation using a
TDNN to learn the relationship between the
stimulus pulse amplitude and the corresponding
SA waveform generated is described here.  This
technique addresses both the problem of
segmented training as well as temporal
generalization of other SA reduction techniques.
Preliminary results using simulated and real data
demonstrate that the TDNN outperforms the
segmented training approach to adaptive noise
cancellation.
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