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ABSTRACT

This study examines the automated detection of
swallowing sounds for normal subjects.  A normal
swallowing sound is characterized by three phases
including oral, pharyngeal and esophageal where
complications lead to swallowing disorder or
dysphagia.  Current gold standard testing for this
abnormality is videofluorography, an x-ray based
procedure with detrimental radiation side effects.
New non-invasive techniques are necessarily
explored to help assess the performance of the
swallowing mechanism.  Recent developed studies in
acoustical airflow estimation indicate the need to
detect and extract swallowing segments from sound
signals.  Extraction is currently a manual process,
both subjective and time-consuming.  Thus, an
automated, objective and quick method is developed
in the form of a “smart” algorithm with the ability to
make decisions like trained technicians and
physicians.  Three sound signal features were
explored to assist in the classification process (AR-
coefficients, RMS values and average power).
Utilizing the features, classification sequences were
produced for six healthy subjects swallowing sounds.
The results were compared with known values
(acquired through visual and auditory means).  RMS
features in combination with the “smart” code yield
the lowest error, on average 20.7 ± 4.6%. Future
studies include testing variations of smart algorithm
code in order to create a robust algorithm.  Also,
future work includes varying test subject ages, test
media (bolus textures) and creating a program-user
interface for decision-making assistance.
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INTRODUCTION

The complex act of swallowing involves the
coordination of various muscles with the
simultaneous closing of the epiglottis and soft palate
in order to prepare the body for consumption and to
prevent the body from aspiration. [1].  Any lack of
coordination or disorder in the swallowing

mechanism is known as dysphagia [2].  Dysphagia is
most common in patients who suffer from stroke or
head injuries, polio, Guillian-Barre syndrome or
spread vascular disease [3].  Dysphagic patients are at
risk of choking, malnutrition, dehydration, cachexia
and death.  These health hazards reveal the essential
need to understand both normal and abnormal
swallowing mechanisms.  In fact, many studies assess
the maturity and competence of the swallowing
mechanism by analyzing breath and swallow
coordination [4].  Recent developments, involving
acoustical airflow estimation [5, 6] reveal the need to
detect swallowing segments and extract them from
breath segments automatically.  Currently, this is
done in a time-consuming, manual and subjective
manner.  A quick, automatic and objective method is
the subject of this paper where an algorithm is
developed to perform such a task.

The sound signals used consist of breath and
swallowing sections (Figure 1).  A breath consists of
inspiration and expiration; both respiratory sounds
are relatively stationary signals.  A swallowing signal
consists of three segments, theoretically
corresponding to the oral, pharyngeal and esophageal
phases [7].  In research communities, there is no
agreement on which exact physical mechanisms are
involved per phase; however, this issue is beyond the
scope of this study.  The swallowing process begins
with the insertion of the bolus (food, solid or liquid)
into the mouth.  The oral phase restricts the bolus in
the mouth and out of the pharynx using the lips and
tongue.  The pharyngeal phase involuntary passes the
bolus from the mouth into the esophagus once the
bolus reaches the epiglottis [8].  This phase
contributes to the first two swallowing segments
called the “initial click” (for the opening of the
cricoipharynx) and “non-click” (for bolus transition
into the esophagus) [7].  Lastly, the esophageal phase
involuntary pushes the bolus through the esophagus
into the stomach via peristaltic waves and contributes
to the last swallow segment called the “final click”
(for the return of the epiglottis) [8].  Note that it is
also possible to differentiate the various signals
through auditory analysis.
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Figure 1. A typical breath and swallowing sound.
(a) inspiration, (b) initial click of swallowing sound,
(b) non-click segment of swallowing sound,
(d) final click of swallowing sound, (e) expiration.

The developed algorithm in this study utilizes
feature extraction to best represent the major
characteristics of the signals and signal analysis
principles to non-invasively analyze the sound signal.

METHOD

Data

For the purpose of developing the automated
swallowing detection algorithm, six respiratory and
swallowing sound recordings were selected from a
previous study data, in which healthy subjects
(children of ages 5-15) participated in that study [6].
The breath and swallowing sounds were recorded by
Siemens EMT 25 C accelerometers placed over the
supersternal notch of the trachea.  The breath and
swallowing sounds were amplified, bandpass filtered
(30-2500 Hz) and digitized at a 10240 Hz sampling
rate.

Signal Processing

The three key features extracted, to represent the
sound signal characteristics, include autoregressive
(AR) coefficients, root-mean-square (RMS) values of
the time signal and the average power of the signal
(Pave) within a frequency band.   It is hypothesized
that employing these features would allow the data to
clearly separate into two distinct classes (or data
clusters).  More specifically, two trials were carried
out that investigated the separation into breath and
swallowing classes and “click” and “non-click”

classes (where initial and final click are considered a
single entity).  The AR, RMS and Pave features were
selected because the time domain signal noticeably
differs between sections; i.e., swallowing segments
are much louder (of greater magnitude) than breath
segments due to the “clicks,” and also the breath
segments are consistent in the frequency domain
whereas swallowing segments are not.

 The sound signals were sequestered into 100 ms
segments with 50% overlap between successive
segments. AR-coefficients, RMS and Pave of each
segment were calculated for classification.  First, the
coefficients of each segment were studied as the
characteristic features. The sound signal in each
segment was modeled by a Burg algorithm of order 7
[9]. Various combinations of the AR-coefficients
were compared in a two-dimensional plane.  For
example, the 1st and 2nd order coefficients were
compared to the 1st and 3rd set of coefficients and so
on as the characteristic features for classification.
Each segment was then classified as breath or
swallowing segment using cluster analysis [10].

Second, the average power was examined.
Spectrogram of the sound signal was calculated for
every 100 ms of data with 50% overlap between
adjacent segments applying a Hanning window
(Figure 2). The three frequency ranges 100-450 Hz,
100-700 Hz, and 450-2500 Hz were studied for
average power calculation.  The first two ranges were
selected to focus on the majority of the signal.  The
lower 100 Hz was selected to avoid background
noise.  The third range was selected to include a good
majority of the signal and had an upper bound
dictated by hardware limitations. Average power of
the swallowing and breath segments were studied to
see if they form two separate clusters. The
classification error was calculated as the frequency in
which the labeled sequences differed, per segment,
from the actual known values.

Third, the RMS values were examined as
characteristic features. First, the mean and standard
deviation were calculated for a known breath section,
creating a threshold of 95% interval of confidence
(m+2s).  Each RMS segment was then compared to
this threshold where values above yielded a
swallowing label, below a breath label.  The resultant
labels were compared to known values in order to
calculate classification error.

Fourth, the Pave and RMS features were combined
using an exclusive-or  (giving priority to segments
labeled as swallows).  The frequency range utilized
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was the optimal range obtained from the previous
spectrogram trial.

Figure 2.  A typical signal spectrogram.

Finally, a “smart” algorithm was developed.  The
program had the ability to check previous segments
and determine whether the next segment should be
labeled as a breath or swallow, ultimately acting like
a trained technician or physician tracking patterns
within the sound signal. Three major constraints were
used that stipulated what the “current” segment
should be labeled as.  First, a definite breath label
was defined for a segment that preceded five
(tentatively labeled) breath segments.  (Five segments
correspond to 250 ms). Second and third, a
swallowing label was defined for a segment that
preceded four swallowing segments or some
combination of segments where the majority were
(tentatively labeled) swallowing segments.  Along
with these constraints, the program used another
smart code that replaced a misclassified swallowing
segment should the majority of surrounding segments
be labeled as swallowing segments.  The smart code
was applied to the RMS sequences and the combined
(spectrogram and RMS) sequences. The fully labeled
segments for both cases were compared to known
values for error evaluation.

Following the smart code results, additional
testing was performed that incorporated “quiet”
segments into both the RMS and smart RMS code.
“Quiet” segments referred to segments small in RMS
magnitude (at the background noise level) that
typically preceded swallowing segments, “initial
click.”  Additionally, “quiet” segments were found
within the “non-click” segments and between
inspiration and expiration. Thus, the implementation
was performed with results compared for error
evaluation.

 RESULTS & DISCUSSION

The AR-coefficients were the first features used
to classify sound signal data distinctly. For both the
click/non-click and breath/swallow classification,
every possible combination of coefficients performed
inadequately.  This was proven by the obvious visual
overlap between classes and misclassification error
(Figure 3).  This can be explained by the fact that
AR-coefficients represent the entire signal in a
compressed form.  While swallowing and respiratory
sections are different in their power over a certain
frequency band, this difference would be blunted by
AR-coefficients as they represent a smoother version
of the original data for the entire frequency band.

Figure 3.  Typical AR-coefficient values for signal.
(“x” = swallow, “o” = breath)

Next, the following illustrates the results obtained
from utilizing the Pave feature, Pave and RMS features
combined, and the smart algorithm (applied to the
combined sequence).  Each error was averaged for
the six subject signals used.  The optimal result was
from the combined error, in the 100-450 Hz range.

Range
(Hz)

Error %
(power)

Error %
(combined)

Error %
   (smart &
   combined)

100-450 24.9 ± 9.9 20.7 ± 4.6 23.7 ± 3.7

100-700 26.0 ± 9.7 22.0 ± 4.6 24.5 ± 3.5

450-2500 25.8± 10.8 21.3 ± 5.3 24.6 ± 3.2

Table 1.  Spectrogram-based results (mean ± SE).

First, it was concluded that the combination of Pave

and RMS values consistently yielded smaller error
than that using Pave alone.  Thus, two features were
better than one.  Second, the smart algorithm was
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applied to the combined features, as their error
percentages were lowest.  Opposite to initial
hypotheses, the smart algorithm, in this case, actually
increased the overall average error slightly.
Referring back to the separate subject results, it was
observed that if the combined error was quite low
(~10%), the smart code failed.  However, if the
combined error was quite high (~30%), the smart
code reduced the error considerably.  Hence, on
average (in this case) the smart code did not
significantly perform well.  Trial and error
investigations indicated that an optimal frequency
range existed per subject, where the smart algorithm
reduced the error sufficiently. It is hypothesized that
a relationship exists though not investigated further in
this study (between optimal frequency range,
combined error and smart (combined) error).

The final results from the study are depicted
below, describing the averaged classification errors
obtained using the RMS values, smart algorithm
(applied to the RMS values) and the additional errors
from incorporating the aforementioned “quiet”
segments.

Error %
(RMS)

Error %
(smart & RMS)

Error %
(RMS & quiet)

23.1 ± 4.0 21.6 ± 3.9 22.8 ± 3.8

Table 2.  RMS-based results (mean ± SE).

RMS error was quite comparable to the combined
error for two features (listed above as 20.7 ± 4.6%).
However, the combined feature requires an
appropriate frequency range, which differed
significantly between the subjects.  Thus, the smart
RMS was chosen as the superior study feature. It was
hypothesized that the reason for such a large
(although optimal) RMS error was due to the loud
expiratory sounds.  Lastly, it was surprising that the
“quiet” segments slightly enhanced the classification
error (a result worthwhile of further investigation).
Nevertheless, the errors were per segment, not per
section (breath and swallowing sections).  In another
word, all the swallowing “click” sounds were
classified correctly but some segments within the
swallowing sections as well as some segments in
forceful expiration sections were misclassified
(especially for segments that were neither breath nor
swallowing but included a noise due to tongue
movement).  Overall, the results of this study are
encouraging for further investigative development of
a “smart” program for automated swallowing sound
detection.

FUTURE WORK

Given that our goal was 100% accuracy, the results
of this study are only a beginning for research in this
field.  Future work includes retooling of the code
using RMS values as the selected feature (as well as
combining the “quiet” segments).  With a robust
program, future testing includes varying test subject
ages and test media (bolus textures) as well as
creating a program-user interface for assistance in
decision-making.   For example, for regions where
the program is unsure of label, the user would be
presented with a labeling choice.
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