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1. INTRODUCTION 

In the last decade, increased availability of high 
performance computing resources has prompted a 
shift in the experimental approach across multiple 
scientific disciplines to the point where computer-
based simulations are gradually becoming acceptable 
substitutes to traditional lab bench experiments. The 
field of computational biomechanics is one derivative 
of this technological evolution and has been 
successfully applied to biomedical problems such as 
impact and fracture mechanics of bone, load 
transmission through the joints, feasibility of joint 
replacements, investigation of joint injury mechanisms, 
and many others. Despite remarkable advances in this 
domain, there remain a number of challenges. One of 
those is related to the fact that almost all 
biomechanical models reported in literature to date 
were derived from the anatomy of a single individual. 
This is a conceptually problematic issue because the 
results acquired from the simulations based on 
subject-specific models cannot be generalized to a 
wider population set. Statistical shape modeling (SSM) 
is a well established image segmentation technique 
and provides an intuitive approach for creating 
population-based parametric models [1]. Within this 
framework the notion of “mean shape” and “principal 
components of shape” are explicitly defined and can 
be used as population representatives for finite 
element (FE) simulations. 

The main objective of the current study was 
concerned with the development of a parametric, 
anatomically accurate, FE model of the human hand 
and wrist. As a first step in this direction, we used a 
publically available database of wrist bone anatomy [2] 
to construct a multi-body SSM of the human wrist. The 
resulting model provides an efficient parameterization 
of anatomical variations of the entire training set and 
can thus overcome major shortcoming of conventional 
biomechanical models associated with limited 
generalization ability. The main contributions of this 
work are: 
 

- A novel algorithm for resampling closed 
genus-0 meshes to produce high quality 

triangulations of arbitrary complexity suitable 
for FE simulations.  
 

- A robust method for constructing multi-body 
SSM of the wrist from surface meshes. 

 
Additionally, all procedures developed in the 

course of this study could be directly applied to create 
an equivalent, multi-body statistical model of the ankle. 

2. MATERIALS AND METHODS 

The data used in this study came in the form of 
triangular surface meshes extracted from CT scans of 
30 healthy volunteers [2]. Unfortunately, most of these 
meshes had large numbers of nearly degenerate 
triangles (i.e. triangles whose vertices are almost 
collinear) which corrupted the quality and increased 
mesh complexity by a considerable amount (in fact 
such elements are abundant in meshes extracted 
directly from segmented medical images using 
conventional methods like marching cubes algorithm 
[3]). If left unchecked, these artifacts would have an 
adverse effect on the computational efficiency of all 
subsequent operations. Furthermore, the models built 
in this study were ultimately intended for use with finite 
element methods (FEM). The numerical stability and 
convergence of FEM, however, largely depend on the 
quality of the input meshes [4]. For this reason, we 
needed a robust mesh resampling algorithm that 
would address the issues of quality and complexity 
simultaneously. The lack of easily implementable 
algorithms that could concurrently address these 
concerns, inspired us to develop our own remeshing 
technique. The steps involved in this procedure are 
summarized in subsection 2.1. 

 
Upon completing initial preprocessing of the input 

meshes we could proceed to construct the composite 
SSM of the wrist. This task was complicated by the 
fact that carpal (i.e. wrist) bones have non-negligible 
relative motion as the wrist changes from one posture 
to the next. Additionally, although the wrists from 
different individuals may appear to be in the same 
posture, in general, the spatial relationships between 
the bones in these wrists will not be the same [2]. 



Recognition of this fact is important because the SSMs 
must be constructed using the training shapes which 
are normalized with respect to the similarity 
transformations. If this requirement is not satisfied the 
statistical model will not provide a valid description of 
the true anatomical variations encountered in the 
training set.  Due to the complexity of this problem, we 
decomposed it into two parts. The first of these is 
summarized in subsection 2.2 and deals with the 
construction of SSMs of the individual wrist bones. The 
second part is described in subsection 2.3 and 
addresses the core problem of appropriately merging 
individual carpal bones into a composite SSM of the 
entire wrist. 

2.1 Mesh Resampling 

The proposed resampling procedure is realized by 
combining the properties of conformal maps from 
differential geometry with the physical principles 
governing the dynamics of charged particle systems.  
 

 
Figure 1: Four main stages of the resampling procedure: (1) 
conformal parameterization, (2) calculation of the distortion field at 
the vertices of the input mesh, (3) adaptive sampling of the 
parameter domain using a system of charged particles, (4) 
subdivision and regularization (optional). 

 
As illustrated in Figure 1, the algorithm consists of 

four consecutive stages that include:  
 
(1) Calculation of a conformal map (CM) of the input 
mesh (see [5] for more details). 
 

(2) Calculation of the distortion field (DF) induced by 
CM from step 1. DF is a scalar “charge” field defined 

on     and is computed as a product of local length 
and area distortions. 
 

(3) Adaptive sampling of the parameter domain using 
DF from step 2. This procedure is based on gradient 
descent minimization of a slightly generalized version 
of the electrostatic potential energy functional, 
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where         
     are the position dependent 

"charges" between the i-th and j-th particles,     is the 

geodesic distance between the particles and     is a 
(global) parameter used to control the strength of 
particle interactions.  
 

(4) Subdivision and regularization. Once the particles 
have been fixed on the unit sphere, their positions 
determine the vertices of the base mesh in the 
parameter domain. Surfaces of increasing complexity 
can be recovered by iteratively subdividing this mesh 
with any standard subdivision scheme and then 
mapping the result back to original surface. Finally, 
regularization is performed only if two or more 
subdivisions are required and is achieved by relaxing 
the subdivided mesh (in the parameter domain) with a 
few gradient descent iterations of Tutte energy [5]. 

2.2 Statistical Models of Individual Carpal Bones 

One of the simplest and perhaps most popular 

ways of representing a shape,       , is by a set of 

points sampled from its surface,               

      . In the context of statistical shape modeling, 

this type of representation is commonly termed the 
point distribution model (PDM). Given a set a training 
set of sample PDMs,                 , the space 
of geometric variations of an object can be learned 
using principal component analysis. For example, 
suppose    is a shape vector composed of an ordered 
list of corresponding PDM vertices (normalized with 
respect to the similarity transformation group) such 

that                 where                   and   

is the total number of vertices. Then the shape 
covariance matrix can be defined as follows:  
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A linear SSM is simply a weighted sum of the 

mean shape vector (  ) and the first   most important 
eigenvectors (a.k.a. eigenmodes) of   ,  

            

 

   

          (4) 

where      are the eigenvectors of  , and      are the 
shape parameters used to control the geometry of the 
object by modifying the contribution of the individual 
eigenmodes.  
 

In order to derive meaningful and accurate 
information regarding the shape variability, the points 

                 must be situated in semantically 

equivalent anatomical positions. Establishing such a 
correspondence is in fact the most challenging aspects 
of the entire model building process. In this study, 
dense point correspondence was established using a 
procedure composed of the following steps: 
 
(1) Rigid pairwise registration using distance fields.  
 

(2) Normalization of conformal parameterizations with 
respect to the Möbius transformation group. 
 

(3) Groupwise point correspondence optimization.  
 

The first step pre-aligned the surfaces using 
similarity transformations and was designed with the 
considerations of robustness and reusability. Although 
the utility of the first criterion is self-explanatory, the 
reusability feature is meant to allow parts of the 
procedure to be integrated into the later model building 
stages (see subsection 2.3). The second step is meant 
to ensure that parameterizations of the training shapes 
are also pre-aligned thus providing good initialization 
to the groupwise optimization procedure that followed. 
The last step was the most computationally intensive 
of all and ultimately determined the final quality of the 
SSMs. It was based on the idea that shape 
parameterizations can be modified independently of 
the primary shapes and was largely based on the 
minimum description length optimization method 
described in [6]. 

2.3 Composite Statistical Model of the Wrist 

In a healthy wrist, a pair of articulating bones 
usually have congruent articulating surfaces, implying 
that the local geometries of adjacent bones are highly 
correlated. In view of the fact that there are eleven 
tightly coupled inter-carpal articulations, altering the 
geometry of a single carpal bone is likely to produce a 
cascading effect through the entire wrist, implying 
additional correlations between non-neighbouring 
bones. In order to accurately capture these 
relationships, prior to construction of the composite 

SSM, the individual bones in all sample wrists must be 
aligned to the same pose while retaining valid 
physiological inter-relationships. To meet this 
requirement, we built around the idea that during 
motion, articulating surfaces between two adjacent 
bones must remain coincident [7] and developed a 
new, constrained, groupwise, two-step registration 
scheme. First, we used the correspondences 
established between the individual carpal bones to 
perform unconstrained, sequential, groupwise 
registration of all sample wrists. Subsequently, we 
used the distance fields computed during the earlier 
stage (see subsection 2.2) to estimate articulating 
surfaces and then used these surfaces to impose the 
physiological constraints while searching for the 
solution closest to the one obtained during the first 
(unconstrained registration) step. 

3. RESULTS & DISCUSSION 

3.1 Mesh Resampling 

In this study, we used our new remeshing 
algorithm to resample 239 meshes of the carpal bones 
of the right hand. As an example, Figure 2 shows side 
by side comparisons of three different carpal bones 
before and after resampling. Table 1 provides a 
corresponding summary of the changes in mesh 
complexity, quality and approximation errors as 
measured by the difference in surface area and 
volume. To assess the quality of the meshes, we used 
the minimum triangle aspect ratios ( ) [4]. According to 
this measure equilateral triangles are the most 
desirable and have    . 
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The results summarized in Table 1 are entirely 
representative of the remaining 236 carpal bones used 
in this study and show a dramatic improvement in 
mesh quality at the cost of minor errors (less than 
0.30%) in volume and surface area.  

3.2 Composite Statistical Model of the Wrist 

The visualization of the multi-body SSM of the 
wrist is provided in Figure 3. Based on the observed 
pattern of variations, it can be seen that the most 
pronounced changes occur as a result of 'widening' 
and 'narrowing' of the carpal bone complex in the 
lateral directions. Another interesting observation is 
that that approximately 74% of the structural variations 
of the carpus could be described by only four 
eigenmodes. We believe that this would not have been 
possible without the local and non-local geometric 
correlations that exist between the carpal bones. 



 
Figure 2: Original and resampled surface meshes with 
corresponding triangle aspect ratio distributions; (a) hamate, (b) 
scaphoid, (c) trapezium. Base meshes of the resampled objects 
shown in (a-c) contained 500 vertices. In all instances, the final 
mesh was obtained by subdividing the base mesh two times.  

 
Table 1: Mesh complexity, quality and reconstruction errors before 
and after resampling of objects shown in Figure 2. ‘O’ stands for 
original and ‘R’ for resampled.      = minimum triangle aspect ratio. 
AE = surface area error = (AR/AO - 1)*100. VE = volume error = 
(VR/VO - 1)*100.  

Obj 
 #  

verts 
# 

faces 
     AE 

(%) 
VE 
(%) 

a 
O 39548 19776 0.001 

-0.276 -0.116 
R 15936 7970 0.797 

c 
O 31068 15936 0.005 

-0.190 -0.102 
R 15936 7970 0.883 

d 
O 32820 16412 0.001 

-0.200 -0.100 
R 15936 7970 0.886 

4. CONCLUSION & FUTURE WORK 

This study was a stepping stone toward the 
ultimate goal of creating an anatomically accurate, 
parametric FE model of the hand and wrist. To this 
end, we proposed a novel mesh resampling procedure 

and also developed a new technique for coupling 
multiple, statistical carpal bone models within a single, 
physiologically valid model of the entire wrist. While 
the performance of our algorithms was demonstrated 
on a publically available database of the wrist bones 
[2], they are directly generalizable to the multi-body 
skeletal structures of the lower limb. In the future, we 
intend to build upon these methods to construct a 
statistical, FE model of the upper limb (hand, wrist and 
forearm) that in addition to the bony structures will 
incorporate the connective and muscle tissues. 
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Figure 3: Extremes of the first four principal modes of carpus 

variation. The structural changes associated with each mode are 
represented by colourmaps (superimposed on the average carpus) 
along the middle column. Areas in dark red denote the most amount 
of variation and areas in dark blue the least amount of variation. 

 


