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INTRODUCTION 

Electromyogram (EMG) signals are 

composed of a mixture of motor unit action 

potential (MUAP) trains where the observed 

EMG signal at each sensor can be modeled as a 

convolutive mixture of the motor unit (MU) 

signals. EMG signal decomposition identifies 

and classifies each individual MUAP. 

Decomposition of EMG signals is important for 

detecting physiological abnormalities, analyzing 

the biomechanics of muscle movement, and to 

study MU recruitment order and patterns [1]. 

The number of source MUs is typically larger 

than the number of EMG sensor channels. Since 

the number of sources is greater than the 

number of sensors, and the convolutive mixing 

matrix is unknown, the decomposition problem 

can be considered as an underdetermined blind 

source separation [2][3][4]. 

One important observation is that MUAPs 

are only occasional from a MU. Therefore, EMG 

signals are composed of signals that are sparse 

in the time domain. In addition, the frequency 

content of MUAPs is not dense and hence EMG 

signals are also sparse in the frequency 

domain. Using this joint domain sparsity, a 

MUAP train could be estimated with fewer 

sensors than number of MUs from the mixture 

EMG signal. 

The main objective of this paper is to 

develop an algorithm which takes advantage of 

the sparsity inherent in EMG signals to estimate 

the MU signals with as few sensors as possible, 

such that individual MUAP can then be 

identified. In this paper, a new optimization 

problem is presented based on the joint time 

and frequency domain sparsity of EMG signals 

for this signal separation. 

SYSTEM MODEL 

Assume that we have N different MU 

signals. Further assume that xn(t) is the signal 

corresponding to the nth MU, where t is the time 

index and n = 1, …, N. Measuring the N source 

MU signals through M electrodes, each 

recorded signal ym(t) can be modeled as the 

filtered and mixed signal 
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where amn(l), l = 0, …, L, are FIR filter 

coefficients between the nth source signal and 

the mth electrode and L + 1 is the filter length. 

Assume that T + L is the length of the time 

slot for the nth source signal nx  and T is the 

length of the mixture signal my  at the mth 

sensor. The vectors nx  and my  are defined, 

respectively, as 
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Now, (1) can be written as 

xAy   
(4) 

where the extended source vector 
T],,[ 1 Nxxx   is the concatenation of the 

1)(  LT  vectors nx , for n = 1, …, N and the 

extended observation vector 
T],,[ 1 Myyy   is 

the concatenation of the 1T  vectors my , for 

Mm ,,1  . 



The mixing matrix A  is defined as 
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where 
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is a )( LTT   block Toeplitz matrix, nm, , 

which can be proved to have the restricted 

isometry property (RIP) [5]. 

TWO-STEP SEPARATION ALGORITHM 

The EMG decomposition problem is to separate 

the N source MU signals from the M 

observations, while the mixing matrix A is 

unknown. Here, we propose an iterative 

algorithm with two steps in each iteration. In 

the first step, estimates are made of all N 

source signals from the M observations. In the 

second step, the mixing matrix A  is estimated. 

This process is repeated to refine the estimates 

of both the source signals and mixing matrix. 

Motor unit source signal estimation 

Since the source signals are jointly sparse in 

the time-frequency domain, it is advantageous 

to use wavelet domain representation of the 

source signals. (4) can be rewritten in the time-

frequency domain as follows 

sAΦxAy   
(7) 

where s  is the sparse time-frequency 

representation of x . The concatenated 

orthonormal basis Φ  is defined as 
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where iiΦ  is a )()( LTLT   orthonormal 

basis that is the same for all i. 

As outlined previously, x  and s  are a priori 

known to be sparse with a small number of 

nonzero components while the rest of the 

components are very small and considered to 

be zero. Under this sparsity assumption, s  can 

be estimated with fewer sensors as compared 

to the number of sources. 

Based on the joint time-frequency sparsity 

of the source signals, the following optimization 

constraint is introduced 

11,
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i iff  is the 1 -norm of f  

and   is a weighting factor. The problem in (9) 

is a convex problem and can be solved using 

convex programming software packages such 

as CVX [6]. 

Mixing matrix estimation 

At initialization, we can randomly set the 

elements of the mixing matrix A , with the 

constraint that the block Toeplitz structure 

introduced in (5) and (6) is maintained. Then 

during the estimation of the mixing matrix, we 

have a minimum mean square error 

optimization, with the constraint that A  has 

orthogonal columns. This constrained 

optimization problem can be written as the 

minimization of the Lagrangian [7] 
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where μ  is an    NTLNTL   matrix of 

Lagrange multipliers and I is the identity 

matrix. By setting the gradients Lμ  and 

LA  to zero, the mixing matrix can be 

computed using 
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where 
T

UDV  is the singular value 

decomposition (SVD) of 
T

xy  and   is an 

identity matrix. 

Two-step blind source separation algorithm 

The two-step blind source separation 

algorithm framework is given in Algorithm 1: 

 

Algorithm 1: Two-step blind source separation  
     Inputs: y  

     Outputs: A , x  

1. Initialize mixing matrix A  randomly 

based on the structure introduced in (5) 

and (6) 

2. Estimate x  by solving (9) 

3. Compute the singular value 

decomposition 
TT

UDVxy   

4. Update 
T

VUA   

5. If the stopping criterion is not reached, 

go to step 2. 

 

The stopping criterion selected for this 

paper is the 2 -norm of difference between 

successive estimates of x  (i.e., 
2

2

)1()( ˆˆ  jj
xx , 

where 
)(ˆ j

x  is the source signal estimate at the 

jth iteration). 

SIMULATION RESULT 

To obtain an initial understanding of how 

the proposed algorithm will perform under a 

controlled testing, we have used simulated EMG 

(sEMG) locust signals where mixing parameters 

can be investigated. Note that this study is still 

preliminary and not yet a comprehensive 

evaluation of performance at this time, but will 

demonstrate functionality of the approach. 

Since locust EMG signals typically have no more 

than two or three simultaneously active MUs 

and each muscle has up to five MUs, we 

simulated the signals with N = 5 MUs with 

random muscle innervations sites and then 

generated MUAPs from each MU at uniformly 

randomized times. For the observed EMG 

signals in this underdetermined problem, M = 3 

convolutive mixtures of the five MUs were 

simulated where the channel between each MU 

source and observation electrode is modeled by 

an FIR filter. In our simulation, the MUAPs 

come from five real locust EMG signals with just 

one active MU recorded.  These real locust EMG 

signals were recorded with needle extracellular 

electrodes inserted in the forewing first basalar 

muscle (M97). 

To generate the mixture signal of sensor m, 

the convolutive mixing matrices Amn, n = 1, …, 

N should be modeled. As can be seen in (6) this 

matrix is completely determined by L + 1 FIR 

filter coefficients for each of the M filters. In 

our simulation, the three mixture signals are 

generated with L = 9 with the filter coefficients 

selected from a normal distribution. The 

mixture signals of all three sensors are shown 

in Fig. 1. We further assume that the 

observation signals are corrupted by additive 

white Gaussian noise with SNR=10 dB. 

During the separation process, the 

orthonormal basis iiΦ , i = 1, …, N, used 

corresponds to the Daubechies wavelet with 

four coefficients. The results for applying the 

approach on the SEMG mixture signals from 

Fig. 1 are shown for sources #3 and #5 in Fig. 

2 and Fig. 3, respectively, with sources #1, #2, 

and #4 showing similar results but excluded 

due to space limitation.  From Fig. 2 and Fig. 3, 

we see that reasonable visual similarity exists 

between the original source signal and the 

reconstructed signal, showing good 

performance for the source separation. 

As an objective measure of performance, 

we computed the normalized root mean square 

error (RMSE) for the source signal versus 

separated (reconstructed) signal using 
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Averaged over 100 runs, the computed RMSE 

was 0.0409, which again indicates good 

performance in the source separation. 



CONCLUSIONS  

In this paper, we proposed an 

underdetermined blind source separation 

algorithm for EMG signal decomposition that 

takes advantage of EMG signal sparsity. Given 

our choice of N = 5 MUs and M = 3 

observations, good performance in EMG signal 

decomposition is achieved, which would be 

suitable for simple muscles with few MUs as for 

the M97 muscle of a locust. 
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Figure 3: Original signal x5(t) for MU #5 (left) 

and corresponding reconstruction (right). 

Figure 2: Original signal x3(t) for MU #3 (left) 

and corresponding reconstruction (right). 

 Figure 1: M = 3 simulated observation signals 

generated based on N = 5 MUs and a randomly 

generated mixing matrix A from (6) with L = 9. 

 


