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ABSTRACT 

The goal of this work is to reduce the 

response time of pattern recognition based 

myoelectric prostheses without compromising 

stability. A Kalman filter (KF) was applied in 

feature-space to track class transitions and to 

determine when features have converged 

towards steady-state class. The system was 

tested against data collected during continuous 

movement where subjects transitioned between 

seven forearm and hand motions. For various 

data acquisition times, the signal-to-noise-ratio 

obtained from filtered and non-filtered features 

were compared, and the system classification 

accuracy and processing time were compared 

against state-of-the-art systems. Results show 

that while applying the proposed system, data 

acquisition time can be reduced from 100ms to 

20ms without compromise to the system’s 

classification accuracy.  

INTRODUCTION 

Pattern recognition (PR) based myoelectric 

prostheses have come a long way from 

conventional myoelectric prostheses, but there 

exists a trade-off between system stability and 

system response time. A stable system should 

be able to accurately determine the selected 

class while in steady-state class (CSS) and to 

precisely determine when users are in a class 

transition (CT). This requires a precise estimate 

of the signal, and a quick and precise response 

to selected classes. 

Conventional proportional control methods 

relate the velocity of prosthesis to the 

amplitude estimate which is obtained by 

low/high pass filtering, intensity estimating, 

and smoothing [1] of the raw EMG. But all  

smoothing process requires a significant time 

history of data [2], or data acquisition time 

(Taq). A larger Taq improves the signal 

estimates, but slows down the system’s 

response as the smoothed signal will lag the 

original signal [2]. To improve the signal 

estimate, pre-processing methods [3,4,5], 

intensity estimators, and smoothers have been 

studied [6,7,8,9,10], either requiring significant 

Taq or processing times (Tp). 

Accurate estimation of the EMG amplitude is 

less important for on-off systems as decisions 

are made using a threshold, but it is important 

to design a system that is sensitive enough to 

respond to the activity of the muscle while 

being selective enough not to respond to the 

activity of undesired noise [1] caused by the 

inherent randomness of the EMG signal. PR 

systems are sophisticated on-off systems [11], 

but state-of-the-art systems (Figure 1) lack 

response. Although they require little Tp and 

are stable in steady-state class given sufficient 

Taq[12], this is problematic in transient 

conditions; larger Taq generate time delays in 

transient conditions. To improve the system’s 

performance under transient conditions, various 

classifiers [13,14], features estimation method 

[13,14,15], and post-processing methods [16], 

have been proposed where optimal stability has 

been obtained using a linear discriminant 

classifier (LDA) to classify time domain (TD) 

features [17]. But all exhibit poor 

responsiveness or uncertainty in CT. 

 

 

The trade-off between system stability and 

system response time needs to be addressed. A 

KF tracking state-transitions in feature-space is 

proposed. For short Taq, the KF minimizes 

variability in the feature estimate improving CSS 

stability. Although it is unclear how the system 

should respond to CT, or how to measure the 

system’s performance in CT, short Taq improves 

the system’s responsiveness while in CT. 

 
Figure 1: State-of-the-art systems. 
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METHODOLOGY 

Tracking in feature-Space 

Tracking in feature-space involves 

determining when a user is beginning to 

transition, estimating the path of the EMG-

features, and determining when a new targeted 

class is reached. This is illustrated in Figure 2. 

 

 

 

In LDA-based systems, the class selected by 

the LDA may be false if an inadvertent class is 

on the path of the EMG-features being tracked, 

or if they fall in low-probability feature space 

regions. Features may fall within low-

probability regions if: the user is transitioning 

to a new class, the user is conducting force 

varying contractions, or the Taq is too short 

resulting in feature estimates with high 

variance. In either case, a change in the 

system’s output may occur which may cause 

misclassifications. Two problems need to be 

addressed when considering conventional LDA-

based systems while users are transitioning: 

1) The features can only be tracked if they do 

not move beyond high-probability regions; 

2) The stability of the system is compromised 

for short data acquisition time. 

These can be solved by tracking in feature-

space, and detecting CSS using a KF with LDA-

observations (KF-LDA) and a convergence 

detector (CD) as shown in Figure 3.  

 

 

 

Kalman filter and steady-state detector 

The KF [18] can be summarized into two 

steps: 1) the time update from t-1 to t, 

modeled by the designer, and 2) the belief 

update computed using the KF algorithm. These 

steps are summarized in Table 1. The state 

belief (µt, Ʃt) is the output of the KF. 

Table 1: Kalman filter summary. 

1- Motion Model:                                  

     Measurement Model:                                   

2- Estimate update: 

                          

            

            
     

     Innovation:                

     Kalman gain:         
         

     
   

     True state estimate: 

                    

              

               

        

                    

                        

                    

                     

                             

The proposed time update is modeled as in 

Table 2. As a result, the predicted EMG-

features µt would fall somewhere in between 
the extracted features at time   and the class 

mean selected by the LDA at time t-1, 

depending on their confidence, Rt and Qt. Also, 

as transitions occur, features converge towards 

the most frequent LDA-output. A threshold 

base CD can be designed to detect CSS as the 

tracked EMG-features converge towards the 

locus of a class, given a pre-determined 

threshold ThCD.  

Table 2: Modeled KF with LDA-observations. 

Motion Model:                                       

              
  

Measurement 

Model: 

                                        

              
  

An important condition to the proposed 

system is that the EMG-features must be 

continuous and the features at time   must 

depend on those at time t-1. TD-features obey 

the second condition, but zero-crossing and 

turns are discontinuous in nature as they lose 

resolution for short Taq. Features used for the 

application are mean absolute value (MAV) and 

wavelength (WL). 

 

Figure 3: Proposed systems. 

Figure 2: Contour plots of class distribution 
in 2-D features space. 
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Data Collection and Processing 

Data were collected for seven healthy 

subjects while performing wrist flexion, wrist 

extension, wrist supination, wrist pronation, 

chuck grip, hand open, and no motion. Data 

acquisition was done using a custom Matlab-

based software [19]. For training, subjects 

conducted a steady-state contraction for 4-

seconds with a 3-second break between 

prompts. Classes were prompted twice in 

random order. For testing, each contraction 

was prompted four times, in random order, and 

subjects were given 8-seconds to both 

transition and reach steady-state. They were 

given a 3-second rest (no motion) between 

contractions. No feedback was provided. Data 

were continuously collected even when subjects 

were at rest. Testing was repeated 6-times with 

2-minutes break between each set. Each 

subject performed the data collection twice on 

two different days. Data were collected for 8-

channels at 1000Hz.  

For comparison purposes, features were 

extracted from various acquisition window 

lengths (Taq) ranging between 5ms and 100ms. 

Features for training and testing had the same 

Taq. The LDA-classifier for the KF-LDA was 

trained prior to applying testing features to the 

system.  

RESULTS 

KF-LDA feature estimation precision 

Since the true signal is unknown, it is 

difficult to measure the accuracy of the filtered 

features. But high signal-to-noise ratio (SNR), 

measured as the ratio of the mean to the 

standard deviation of the estimated features, 

indicates a smoother, or more precise, feature 

estimate. There exists a direct correlation 

between stability and the SNR of the amplitude 

estimate[3]. The SNR while in steady-state of 

the features' estimate obtained using the KF-

LDA, µt, and without KF, Xt, were compared. 

This comparison was done in steady-state 

class. Figure 4 shows the SNR of the features 

while in steady-state for different Taq. The last 

4-seconds of each contraction was used to 

measure the SNR, results were averaged across 

all channels and contractions.  

Performance of steady-state CD  

Since it is unclear how to measure the 

performance of the system while in CT, only its 

performance in CSS was evaluated and 

compared against systems using LDA-

classification with and without MV post-

processing. Figure 5 shows the average steady-

state classification accuracy (Cac) across all 

contractions for different Taq. The last 4-

seconds of each contraction was used to 

measure the Cac. For simplicity, the 

convergence threshold ThCD of the CD and the 

decision time (128ms [16]) of the MV were 

kept constant.  

 

 

 

 

 

 

 

 

 

Response Time 

Response time is affected by the Tp and the 

Taq. The Tp consist of the time delay required to 

compute a class label given a window of 

processed EMG has been input to the system. 

The KF-LDA with CD requires ~0.21ms and the 

LDA-MV system requires 0.13ms of Tp. 

Although there is a slight increase in the Tp, 

this is a small fraction of Taq. 
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Figure 4: Steady-state SNR of feature estimates. 
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Figure 5: Steady-state classification accuracy. 
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DISCUSSION 

From these results, it is evident that the KF-

LDA improves the feature estimate precision, 

and that CD and MV improve the Caq while in 

steady-state for short Taq (<80ms). It is unclear 

how CT stability should be measured or how the 

system should respond to CT, but since the KF-

LDA provides a more stable feature estimate, 

the proposed system may improve the system’s 

stability while in CT.  

Although the Tp is increased while using the 

KF-LDA (~0.1ms), this increase is insignificant 

compared to the Taq improvement. The KF-LDA 

with CD is stable while in CSS for 20ms Taq, and 

since the CD does not require a post-processing 

decision time, as the MV, the proposed system 

may improve the system’s responsiveness to 

CT. It must be realized that system response 

time is also affected by the CD; it may take 

some time before features converge towards 

CSS. For robust evaluation, the system response 

time needs to be evaluated in real-time [20]. 

CONCLUSION 

There exists a trade-off between system 

stability and system response time for state-of-

the-art PR systems. To progress this tradeoff, 

this paper proposes a KF design that combines 

stable LDA-classification during steady-state 

conditions with the KF’s ability to track non-

linear progressions. Preliminary investigations 

show promising results, future work should 

investigate a method to measure CT 

performance, how the system should respond 

to CT, optimal ThCD, and the system’s real-time 

performance.   
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