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INTRODUCTION 

The electrical properties of human tissues affect the 
interaction of electromagnetic (EM) fields with the human 
body. The effects depend on the tissue properties as well as 
on the strength and frequency of the EM signals. These 
effects can be modeled using numerical methods. This paper 
describes the essence of a graphic processing unit 
accelerated Transmission Line Matrix (TLM) method with 
emphasis on applying TLM to bioelectromagnetic modeling. 

THE TRANSMISSION LINE MATRIX METHOD 

The Transmission Line Matrix (TLM) is a computational 
algorithm based on the Huygens Principle which stipulates 
that a wavefront has of a large number of radiators which 
give rise to spherical wavelets. These wavelets interact with 
each other to form a new wavefront [1]. This idea is depicted 
in the Treatise of Light using a candle’s flame as shown in 
Figure 1.  The systems of wavelet due to sources A, B, and C, 
respectively, propagate away from the flame and combine 
with each other to form a new wavefront. The point sources 
on the new wavefront in turn give rise to another generation 
of wavelets. This recursive process can be implemented 
using a mesh of transmission lines as shown in Figure 2. 

 
Figure 1: Illustration of Huygens’ Principle. A candle and three point 
sources (A, B, and C) on the surface of the flame. Each point source 
generates a family of circular wavelet.  The concentric wavelets 
generated by the point sources propagate radially away from the 
center. Circles having the same radius represent wavelets having 
the same phase shift with respect to their source location. 

 
Figure 2: A mesh of transmission lines.  The voltage impulse 
scattering and transferring procedure (equations 2 and 3) can be 
used to model the wave propagation behavior described by 
Huygens’ Principle. 

As the space between transmission-lines decreases, the 
wave property of the mesh approaches to that of the 
continuum space which the mesh represents. In order to 
implement the transmission line mesh, hence the Huygens’ 
wave model, on a digital computer, one must formulate the 
algorithm in the discretized form; i.e. both space and time 
must be represented in terms of finite elementary units, ∆𝑙𝑙 
and Δ𝑡𝑡, which are related by the velocity of light, 𝑐𝑐, such 
that: 
 Δ𝑙𝑙 = 𝑐𝑐 × Δ𝑡𝑡 (1) 

Two-dimensional space can then be modeled by a Cartesian 
matrix of points, called nodes, separated by a distance Δ𝑙𝑙. 
The unit time it takes for electromagnetic signal to travel 
from one node to the next is Δ𝑡𝑡.  The fundamental 
procedures of the TLM method are shown in Figure 3. 

 
Figure 3: Huygens’ wave model in the discretized two-dimensional 
space. (a) Incidence of a short voltage impulse at a space point 
(scattering center). (b) Scattering of the impulse. (c) Transfer of the 
scattered impulses to neighboring nodes. 
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According to the transmission line theory a voltage 
impulse incident on a transmission line junction will have its 
energy scattered in all directions. If such an impulse is 
incident on one of these junctions, also called nodes, in a 
TLM mesh from the negative y-direction, each scattered 
impulse must carry one fourth of the energy on the incident 
impulse. The scattered field quantities must then be 1/2 in 
magnitude. Furthermore, the reflection coefficient seen by 
the incident impulse must be –1/2 to ensure field continuity 
at the node. This event can be described by the following 
matrix equation: 

 𝑽𝑽𝑟𝑟𝑘𝑘+1 = 𝑺𝑺 × 𝑽𝑽𝑖𝑖𝑘𝑘  (2)  

where 𝑽𝑽 = �

𝑉𝑉1
𝑉𝑉2
𝑉𝑉3
𝑉𝑉4

�, 𝑺𝑺 = 1
2
�

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

�, 𝑉𝑉1, 𝑉𝑉2, 𝑉𝑉3,  

and 𝑉𝑉4 represent the voltage impulses incident from the 
bottom (−ve 𝑦𝑦), left (−ve 𝑥𝑥), top (+ve 𝑦𝑦), and right 
(+ve 𝑥𝑥) of a node. The superscripts 𝑖𝑖 and 𝑟𝑟 denote incident 
and reflected impulses. The subscripts 𝑘𝑘 and 𝑘𝑘 + 1 
represent the time in Δ𝑡𝑡. Furthermore, any impulse 
emerging from a node becomes automatically an incident 
impulse on their neighboring node (Figure 3b and c). This 
event can be best described by the following set of 
equations: 

 

𝑉𝑉𝑘𝑘+1 1
𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑉𝑉𝑘𝑘+1 3

𝑟𝑟(𝑥𝑥,𝑦𝑦 − 1)

𝑉𝑉𝑘𝑘+1 2
𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑉𝑉𝑘𝑘+1 4

𝑟𝑟(𝑥𝑥 − 1,𝑦𝑦)

𝑉𝑉𝑘𝑘+1 3
𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑉𝑉𝑘𝑘+1 1

𝑟𝑟(𝑥𝑥,𝑦𝑦 + 1)

𝑉𝑉𝑘𝑘+1 4
𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑉𝑉𝑘𝑘+1 2

𝑟𝑟(𝑥𝑥 + 1,𝑦𝑦)

 (3) 

The coordinates in (3) are normalized to the space 
discretization unit, Δ𝑙𝑙. Equations (2) and (3) together form 
the basic algorithm of the TLM method. Thus, if the 
magnitudes, positions and directions of all voltage impulses 
are known at time 𝑘𝑘, then the corresponding values of the 
voltage impulses at time 𝑘𝑘 + 1 can be obtained by operating 
equations (2) and (3) on each node in the mesh. 

MODELING OF MATERIAL AND BOUNDARY PROPERTIES 

To model biological tissues, transmission line stubs of 
various electrical properties and terminations are inserted at 
the centered of the nodes. For impulse synchronism reason, 
the length of these loading stubs must be one-half of the 
mesh spatial resolution Δ𝑙𝑙. As long as the mesh parameters 
Δ𝑙𝑙 is small when compared with the wavelength of interest, 
the voltage and current relationship in the 𝑥𝑥- and 𝑦𝑦-direction 
of the TLM mesh can be represented by the following 
differential equations [1]: 

 

𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝐿𝐿 𝜕𝜕𝐼𝐼𝑥𝑥
𝜕𝜕𝜕𝜕

                            

𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝐿𝐿 𝜕𝜕𝐼𝐼𝑦𝑦
𝜕𝜕𝜕𝜕

                            

𝜕𝜕𝐼𝐼𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝐼𝐼𝑦𝑦
𝜕𝜕𝜕𝜕

= 2𝐶𝐶 �1 + 𝑦𝑦𝑜𝑜
4
� 𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕
− 𝑔𝑔𝑜𝑜�𝐶𝐶 𝐿𝐿⁄

Δ𝑙𝑙
𝑉𝑉𝑧𝑧

 (4) 

The corresponding Maxwell’s equations in a lossy medium 
obtained by setting 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0 and 𝐸𝐸𝑥𝑥 = 𝐸𝐸𝑦𝑦 = 𝐻𝐻𝑧𝑧 = 0 are: 

 

𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝜇𝜇 𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

   

𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝜇𝜇 𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝜖𝜖 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝜎𝜎𝐸𝐸𝑧𝑧     

                         (5) 

The following equivalences can be established by comparing 
equations (4) and (5): 

 

𝐸𝐸𝑧𝑧 ≡ 𝑉𝑉𝑧𝑧               𝐻𝐻𝑥𝑥 ≡ 𝐼𝐼𝑦𝑦                 𝐻𝐻𝑦𝑦 ≡ −𝐼𝐼𝑥𝑥

 𝜖𝜖 ≡ 𝜖𝜖𝑜𝑜𝜖𝜖𝑟𝑟            𝜖𝜖𝑜𝑜 ≡ 2𝐶𝐶            𝜖𝜖𝑟𝑟 ≡ 1 + 𝑦𝑦𝑜𝑜
4

𝜇𝜇 ≡ 𝐿𝐿                 𝜎𝜎 ≡
𝑔𝑔𝑜𝑜�𝐶𝐶 𝐿𝐿⁄

∆𝑙𝑙

 (6) 

The shape and size of tissues in various organs can be 
defined by setting the stub values accordingly. Since the size 
of the TLM computation domain must agree with the 
biological model which in turn is limited by the amount of 
available computer memory, conducting and absorbing 
boundaries are used to define the modeling space. These 
boundaries can be implemented by introducing appropriate 
impulse reflection coefficients, Γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, in the TLM mesh. 
The reflection coefficients must be: 
• real numbers because TLM is a time-domain procedure, 
• implemented at the center of a node or halfway 

between two nodes because the movement of the 
voltage impulses in the mesh must be synchronized, 

• chosen such that the interaction of the electromagnetic 
wave, represented by the superposition of impulses in 
the mesh, with the boundary is properly modeled. 

The second condition implies that curved boundaries must 
be modeled by piecewise straight sub-boundaries. The 
impulse reflection coefficient for perfect electric and 
magnetic boundaries are −1 and 1, respectively. For simple 
absorbing boundaries, the reflection coefficient depends on 
the angle of incidence, 𝜃𝜃: 

 Γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃) = 1−�2𝜖𝜖𝑟𝑟cos (𝜃𝜃)
1+�2𝜖𝜖𝑟𝑟cos (𝜃𝜃)

 (7) 

A thorough discussion of various types of boundaries, 
lossy material, and the generalized three dimensional 
implementation of the TLM method are given in [1] to [3]. 
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MODELLING OF BIOELECTROMAGNETIC EFFECTS 

In order to analyze a complete human body with the 3.6 
to 2.0 mm resolution data models, the TLM mesh will have 
5 to 30 mega voxels, figure 4. These resolutions are good 
enough for modeling of human tissue interacting with 
microwave frequency signal released by common wireless 
devices such as cellphones and routers.  Using equation (1), 
with 𝜖𝜖𝑟𝑟 = 30 [6] and Δℓ = 2 mm, the modeling time step 
between two successive updates is 36 picoseconds. The 
period of a 3-GHz microwave signal is about 33 picoseconds. 
Hence, the computation time step is in the same order of the 
signal’s temporal resolution.  A smaller modelling resolution, 
Δℓ may be used if more accurate result is needed but that 
would reduce the modeling time step and increase the 
overall numerical effort. 

With the above estimation, to iterate over a 30 mega-
voxel human model once using the TLM method would 
require more than 3 billion floating point operations.  
Running such a large number of TLM operations hundreds of 
thousands of times on traditional CPU hardware would 
require days of CPU times. Thanks to the advancement in 
graphic processing unit (GPU) technology, it is now possible 
to bring supercomputing power to the PC world.  Numerical 
procedures such as TLM can be accelerated by two orders of 
magnitudes by using desktop and laptop PCs equipped with 
a GPU. Simulating a TLM mesh on these PCs is a two-step 
process: 1) Allocate mesh memory on the host computer’s 
CPU, and 2) map the TLM mesh on the CPU to the GPU using 
a GPU computing library. In this paper, we will use 
Microsoft’s C++ AMP library.  The two required steps are 
illustrated in Listings 1 and 2. With the mesh memory 
allocated on the GPU, the TLM impulse scattering and 
transfer procedures with inhomogeneous material can be 
executed in parallel using the C++ AMP code shown in 
Listing-3 and 4, respectively.  

 
Figure 4: A 2mm resolution human-model in a gradient coil for 
peripheral nerve simulation [4, 5]. 

Listing-5 shown the C++AMP implementation of the TLM 
boundary operations.  The code segments in Listings 3 to 5 
constitute the main operations of the TLM algorithm. The 
codes are executed repeatedly inside an iteration loop until 
the maximum number of iterations is reached. Finally, data 
is transferred back to the CPU by the code in Listing-6. 

// Define storage on the host computer, i.e. CPU 
//====================================== 
pLeft   = new std::vector<float>(size_of_mesh), // v1 
pTop    = new std::vector<float>(size_of_mesh), // v2 
pRight  = new std::vector<float>(size_of_mesh), // v3 
pBottom = new std::vector<float>(size_of_mesh), // v4 
pStub   = new std::vector<float>(size_of_mesh), // v5 
pYo     = new std::vector<float>(size_of_mesh), 
pGo     = new std::vector<float>(size_of_mesh); 
Listing-1: C++ code segment for allocating a two-dimensional TLM 
mesh on the CPU. 
 
// Define storage on the client processors, i.e. GPU 
//======================================== 
extent<2> ex(XSize,YSize); 
ap_left  = new array<float, 2>(ex, pLeft->begin()); 
ap_top   = new array<float, 2>(ex, pTop->begin()); 
ap_right = new array<float, 2>(ex, pRight->begin()); 
ap_bottom= new array<float, 2>(ex, pBottom->begin()); 
ap_stub  = new array<float, 2>(ex, pStub->begin()); 
ap_yo    = new array<float, 2>(ex, pYo->begin()); 
ap_go    = new array<float, 2>(ex, pGo->begin()); 
Listing-2: Code segment for mapping the two-dimensional TLM 
mesh created in Listing-1 on to the GPU. The extent and array are 
C++ AMP library objects for GPU computing. 
 
// Define reference variables 
//====================== 
array<float, 2> 
  &a_top(*ap_top),    &a_bottom(*ap_bottom), 
  &a_left(*ap_left),  &a_right(*ap_right), 
  &a_stub(*ap_stub),  &a_yo(*ap_yo),   &a_go(*ap_go); 
 
// C++ AMP implementation of impulse scattering 
//======================================= 
parallel_for_each(a_top.extent, [&](index<2> ij) restrict(amp) 
{ 
    float yo = a_yo[ij]; 
    float va = 2.0f/(4.0f+a_go[ij]+yo); 

float vb = (a_top[ij]+a_left[ij]+a_bottom[ij] 
           +a_right[ij]+yo*a_stub[ij])*va; 

    a_top[ij]    = vb - a_top[ij]; 
    a_left[ij]   = vb - a_left[ij]; 
    a_bottom[ij] = vb - a_bottom[ij]; 
    a_right[ij]  = vb - a_right[ij]; 
    a_stub[ij]   = vb - a_stub[ij]; 
}); 
Listing-3: TLM scattering procedure in C++ AMP. 
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//====================================== 
// C++ AMP implementation of impulse transfer 
//====================================== 
parallel_for_each(a_top.extent, [&,M,N](index<2> ij) restrict(amp) 
{ 
    index<2> ip1(ij[0]+1, ij[1]), jp1(ij[0], ij[1]+1); 
    if (ij[0]<M) { float temp = a_right[ij]; 
                   a_right[ij] = a_left[ip1]; 
                   a_left[ip1] = temp; 
    } 
    if (ij[1]<N) { float temp = a_bottom[ij]; 
                   a_bottom[ij] = a_top[jp1]; 
                   a_top[jp1]   = temp; 
    } 
}); 
Listing-4: TLM impulse transfer procedure in C++ AMP.  
 
//============================================== 
// C++ AMP implementation of simple boundary operation 
//============================================== 
parallel_for_each(a_top.extent, [&,M,N](index<2> ij) restrict(amp) 
{ 
    index<2> ip1(ij[0]+1, ij[1]), jp1(ij[0], ij[1]+1); 
     
    if (ij[0]<M && a_hRefl[ij]!=NO_BOUNDARY) { 
        float temp = a_right[ij] * a_hRefl[ij]; 
        a_right[ij] = a_left[ip1] * a_hRefl[ij]; 
        a_left[ip1] = temp; } 
    if (ij[1]<N && a_vRefl[ij]!=NO_BOUNDARY) { 
        float temp = a_bottom[ij] * a_vRefl[ij]; 
        a_bottom[ij] = a_top[jp1] * a_vRefl[ij]; 
        a_top[jp1]   = temp; } 
}); 
Listing-5: TLM impulse reflection operations in C++ AMP. 
 
//======================== 
// Transfer data on GPU to CPU 
//======================== 
extent<2> ex(XSize,YSize); 
array_view<float,2> av_top(ex,*pTop); 
array_view<float,2> av_left(ex,*pLeft); 
array_view<float,2> av_bottom(ex,*pBottom); 
array_view<float,2> av_right(ex,*pRight); 
array_view<float,2> av_stub(ex,*pStub); 
ap_top->copy_to(av_top); 
ap_left->copy_to(av_left); 
ap_bottom->copy_to(av_bottom); 
ap_right->copy_to(av_right); 
ap_stub->copy_to(av_stub); 
Listing-6: Code segment for transferring TLM data on the GPU back 
to the CPU.  

ALGORITHM PERFORMANCE 

The C++ AMP TLM procedures described in this paper have 
been incorporated into a TLM electromagnetic field simulator.  The 
C++ AMP accelerated parallel TLM algorithms can run at a top 
speed of 83 Gflops/second on a NVIDIA Tesla C2050 GPU.  The 
performance can be further enhanced by using some advanced C++ 
AMP memory tiling features. A discussion on this advanced 
programing technique is beyond the scope of this paper. Readers 
interested in this technique are referred to Microsoft’s online 
documentation on C++ AMP, [7]. 

CONCLUSION 

An accelerated massively parallel TLM engine has been 
incorporated into a TLM simulator.  The software can run at 
a top speed of 83 Gflops/second on the NVIDIA Tesla C2050 
GPU which is two orders of magnitude faster than an 
equivalent CPU version running on an Intel i7 processor.  The 
performance can be further enhanced by using C++ AMP 
memory tiling controls. A graphical user interface for 
biomedical modeling of human model and multi-physics 
capabilities are being developed for this GPU accelerated 
TLM solver. 
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