
 2014 CMBEC37 Conference
 Vancouver, BC
 May 21 – 23, 2014

MODELING OF BIOELECTROMAGNETIC EFFECTS USING
THE TRANSMISSION LINE MATRIX METHOD

Poman P.M. So

Department of Electrical and Computer Engineering
University of Victoria

INTRODUCTION

The electrical properties of human tissues affect the
interaction of electromagnetic (EM) fields with the human
body. The effects depend on the tissue properties as well as
on the strength and frequency of the EM signals. These
effects can be modeled using numerical methods. This paper
describes the essence of a graphic processing unit
accelerated Transmission Line Matrix (TLM) method with
emphasis on applying TLM to bioelectromagnetic modeling.

THE TRANSMISSION LINE MATRIX METHOD

The Transmission Line Matrix (TLM) is a computational
algorithm based on the Huygens Principle which stipulates
that a wavefront has of a large number of radiators which
give rise to spherical wavelets. These wavelets interact with
each other to form a new wavefront [1]. This idea is depicted
in the Treatise of Light using a candle’s flame as shown in
Figure 1. The systems of wavelet due to sources A, B, and C,
respectively, propagate away from the flame and combine
with each other to form a new wavefront. The point sources
on the new wavefront in turn give rise to another generation
of wavelets. This recursive process can be implemented
using a mesh of transmission lines as shown in Figure 2.

Figure 1: Illustration of Huygens’ Principle. A candle and three point
sources (A, B, and C) on the surface of the flame. Each point source
generates a family of circular wavelet. The concentric wavelets
generated by the point sources propagate radially away from the
center. Circles having the same radius represent wavelets having
the same phase shift with respect to their source location.

Figure 2: A mesh of transmission lines. The voltage impulse
scattering and transferring procedure (equations 2 and 3) can be
used to model the wave propagation behavior described by
Huygens’ Principle.

As the space between transmission-lines decreases, the
wave property of the mesh approaches to that of the
continuum space which the mesh represents. In order to
implement the transmission line mesh, hence the Huygens’
wave model, on a digital computer, one must formulate the
algorithm in the discretized form; i.e. both space and time
must be represented in terms of finite elementary units, ∆𝑙𝑙
and Δ𝑡𝑡, which are related by the velocity of light, 𝑐𝑐, such
that:
 Δ𝑙𝑙 = 𝑐𝑐 × Δ𝑡𝑡 (1)

Two-dimensional space can then be modeled by a Cartesian
matrix of points, called nodes, separated by a distance Δ𝑙𝑙.
The unit time it takes for electromagnetic signal to travel
from one node to the next is Δ𝑡𝑡. The fundamental
procedures of the TLM method are shown in Figure 3.

Figure 3: Huygens’ wave model in the discretized two-dimensional
space. (a) Incidence of a short voltage impulse at a space point
(scattering center). (b) Scattering of the impulse. (c) Transfer of the
scattered impulses to neighboring nodes.

Proceedings of the 37th Canadian Medical and Biological Engineering Conference – 2014

According to the transmission line theory a voltage
impulse incident on a transmission line junction will have its
energy scattered in all directions. If such an impulse is
incident on one of these junctions, also called nodes, in a
TLM mesh from the negative y-direction, each scattered
impulse must carry one fourth of the energy on the incident
impulse. The scattered field quantities must then be 1/2 in
magnitude. Furthermore, the reflection coefficient seen by
the incident impulse must be –1/2 to ensure field continuity
at the node. This event can be described by the following
matrix equation:

 𝑽𝑽𝑟𝑟𝑘𝑘+1 = 𝑺𝑺 × 𝑽𝑽𝑖𝑖𝑘𝑘 (2)

where 𝑽𝑽 = �

𝑉𝑉1
𝑉𝑉2
𝑉𝑉3
𝑉𝑉4

�, 𝑺𝑺 = 1
2
�

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

�, 𝑉𝑉1, 𝑉𝑉2, 𝑉𝑉3,

and 𝑉𝑉4 represent the voltage impulses incident from the
bottom (−ve 𝑦𝑦), left (−ve 𝑥𝑥), top (+ve 𝑦𝑦), and right
(+ve 𝑥𝑥) of a node. The superscripts 𝑖𝑖 and 𝑟𝑟 denote incident
and reflected impulses. The subscripts 𝑘𝑘 and 𝑘𝑘 + 1
represent the time in Δ𝑡𝑡. Furthermore, any impulse
emerging from a node becomes automatically an incident
impulse on their neighboring node (Figure 3b and c). This
event can be best described by the following set of
equations:

𝑉𝑉𝑘𝑘+1 1
𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑉𝑉𝑘𝑘+1 3

𝑟𝑟(𝑥𝑥,𝑦𝑦 − 1)

𝑉𝑉𝑘𝑘+1 2
𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑉𝑉𝑘𝑘+1 4

𝑟𝑟(𝑥𝑥 − 1,𝑦𝑦)

𝑉𝑉𝑘𝑘+1 3
𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑉𝑉𝑘𝑘+1 1

𝑟𝑟(𝑥𝑥,𝑦𝑦 + 1)

𝑉𝑉𝑘𝑘+1 4
𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑉𝑉𝑘𝑘+1 2

𝑟𝑟(𝑥𝑥 + 1,𝑦𝑦)

 (3)

The coordinates in (3) are normalized to the space
discretization unit, Δ𝑙𝑙. Equations (2) and (3) together form
the basic algorithm of the TLM method. Thus, if the
magnitudes, positions and directions of all voltage impulses
are known at time 𝑘𝑘, then the corresponding values of the
voltage impulses at time 𝑘𝑘 + 1 can be obtained by operating
equations (2) and (3) on each node in the mesh.

MODELING OF MATERIAL AND BOUNDARY PROPERTIES

To model biological tissues, transmission line stubs of
various electrical properties and terminations are inserted at
the centered of the nodes. For impulse synchronism reason,
the length of these loading stubs must be one-half of the
mesh spatial resolution Δ𝑙𝑙. As long as the mesh parameters
Δ𝑙𝑙 is small when compared with the wavelength of interest,
the voltage and current relationship in the 𝑥𝑥- and 𝑦𝑦-direction
of the TLM mesh can be represented by the following
differential equations [1]:

𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝐿𝐿 𝜕𝜕𝐼𝐼𝑥𝑥
𝜕𝜕𝜕𝜕

𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝐿𝐿 𝜕𝜕𝐼𝐼𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝐼𝐼𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝐼𝐼𝑦𝑦
𝜕𝜕𝜕𝜕

= 2𝐶𝐶 �1 + 𝑦𝑦𝑜𝑜
4
� 𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕
− 𝑔𝑔𝑜𝑜�𝐶𝐶 𝐿𝐿⁄

Δ𝑙𝑙
𝑉𝑉𝑧𝑧

 (4)

The corresponding Maxwell’s equations in a lossy medium
obtained by setting 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0 and 𝐸𝐸𝑥𝑥 = 𝐸𝐸𝑦𝑦 = 𝐻𝐻𝑧𝑧 = 0 are:

𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝜇𝜇 𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝜇𝜇 𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝜖𝜖 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝜎𝜎𝐸𝐸𝑧𝑧

 (5)

The following equivalences can be established by comparing
equations (4) and (5):

𝐸𝐸𝑧𝑧 ≡ 𝑉𝑉𝑧𝑧 𝐻𝐻𝑥𝑥 ≡ 𝐼𝐼𝑦𝑦 𝐻𝐻𝑦𝑦 ≡ −𝐼𝐼𝑥𝑥

 𝜖𝜖 ≡ 𝜖𝜖𝑜𝑜𝜖𝜖𝑟𝑟 𝜖𝜖𝑜𝑜 ≡ 2𝐶𝐶 𝜖𝜖𝑟𝑟 ≡ 1 + 𝑦𝑦𝑜𝑜
4

𝜇𝜇 ≡ 𝐿𝐿 𝜎𝜎 ≡
𝑔𝑔𝑜𝑜�𝐶𝐶 𝐿𝐿⁄

∆𝑙𝑙

 (6)

The shape and size of tissues in various organs can be
defined by setting the stub values accordingly. Since the size
of the TLM computation domain must agree with the
biological model which in turn is limited by the amount of
available computer memory, conducting and absorbing
boundaries are used to define the modeling space. These
boundaries can be implemented by introducing appropriate
impulse reflection coefficients, Γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, in the TLM mesh.
The reflection coefficients must be:
• real numbers because TLM is a time-domain procedure,
• implemented at the center of a node or halfway

between two nodes because the movement of the
voltage impulses in the mesh must be synchronized,

• chosen such that the interaction of the electromagnetic
wave, represented by the superposition of impulses in
the mesh, with the boundary is properly modeled.

The second condition implies that curved boundaries must
be modeled by piecewise straight sub-boundaries. The
impulse reflection coefficient for perfect electric and
magnetic boundaries are −1 and 1, respectively. For simple
absorbing boundaries, the reflection coefficient depends on
the angle of incidence, 𝜃𝜃:

 Γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃) = 1−�2𝜖𝜖𝑟𝑟cos (𝜃𝜃)
1+�2𝜖𝜖𝑟𝑟cos (𝜃𝜃)

 (7)

A thorough discussion of various types of boundaries,
lossy material, and the generalized three dimensional
implementation of the TLM method are given in [1] to [3].

 2014 CMBEC37 Conference
 Vancouver, BC
 May 21 – 23, 2014

MODELLING OF BIOELECTROMAGNETIC EFFECTS

In order to analyze a complete human body with the 3.6
to 2.0 mm resolution data models, the TLM mesh will have
5 to 30 mega voxels, figure 4. These resolutions are good
enough for modeling of human tissue interacting with
microwave frequency signal released by common wireless
devices such as cellphones and routers. Using equation (1),
with 𝜖𝜖𝑟𝑟 = 30 [6] and Δℓ = 2 mm, the modeling time step
between two successive updates is 36 picoseconds. The
period of a 3-GHz microwave signal is about 33 picoseconds.
Hence, the computation time step is in the same order of the
signal’s temporal resolution. A smaller modelling resolution,
Δℓ may be used if more accurate result is needed but that
would reduce the modeling time step and increase the
overall numerical effort.

With the above estimation, to iterate over a 30 mega-
voxel human model once using the TLM method would
require more than 3 billion floating point operations.
Running such a large number of TLM operations hundreds of
thousands of times on traditional CPU hardware would
require days of CPU times. Thanks to the advancement in
graphic processing unit (GPU) technology, it is now possible
to bring supercomputing power to the PC world. Numerical
procedures such as TLM can be accelerated by two orders of
magnitudes by using desktop and laptop PCs equipped with
a GPU. Simulating a TLM mesh on these PCs is a two-step
process: 1) Allocate mesh memory on the host computer’s
CPU, and 2) map the TLM mesh on the CPU to the GPU using
a GPU computing library. In this paper, we will use
Microsoft’s C++ AMP library. The two required steps are
illustrated in Listings 1 and 2. With the mesh memory
allocated on the GPU, the TLM impulse scattering and
transfer procedures with inhomogeneous material can be
executed in parallel using the C++ AMP code shown in
Listing-3 and 4, respectively.

Figure 4: A 2mm resolution human-model in a gradient coil for
peripheral nerve simulation [4, 5].

Listing-5 shown the C++AMP implementation of the TLM
boundary operations. The code segments in Listings 3 to 5
constitute the main operations of the TLM algorithm. The
codes are executed repeatedly inside an iteration loop until
the maximum number of iterations is reached. Finally, data
is transferred back to the CPU by the code in Listing-6.

// Define storage on the host computer, i.e. CPU
//======================================
pLeft = new std::vector<float>(size_of_mesh), // v1
pTop = new std::vector<float>(size_of_mesh), // v2
pRight = new std::vector<float>(size_of_mesh), // v3
pBottom = new std::vector<float>(size_of_mesh), // v4
pStub = new std::vector<float>(size_of_mesh), // v5
pYo = new std::vector<float>(size_of_mesh),
pGo = new std::vector<float>(size_of_mesh);
Listing-1: C++ code segment for allocating a two-dimensional TLM
mesh on the CPU.

// Define storage on the client processors, i.e. GPU
//==
extent<2> ex(XSize,YSize);
ap_left = new array<float, 2>(ex, pLeft->begin());
ap_top = new array<float, 2>(ex, pTop->begin());
ap_right = new array<float, 2>(ex, pRight->begin());
ap_bottom= new array<float, 2>(ex, pBottom->begin());
ap_stub = new array<float, 2>(ex, pStub->begin());
ap_yo = new array<float, 2>(ex, pYo->begin());
ap_go = new array<float, 2>(ex, pGo->begin());
Listing-2: Code segment for mapping the two-dimensional TLM
mesh created in Listing-1 on to the GPU. The extent and array are
C++ AMP library objects for GPU computing.

// Define reference variables
//======================
array<float, 2>
 &a_top(*ap_top), &a_bottom(*ap_bottom),
 &a_left(*ap_left), &a_right(*ap_right),
 &a_stub(*ap_stub), &a_yo(*ap_yo), &a_go(*ap_go);

// C++ AMP implementation of impulse scattering
//=======================================
parallel_for_each(a_top.extent, [&](index<2> ij) restrict(amp)
{
 float yo = a_yo[ij];
 float va = 2.0f/(4.0f+a_go[ij]+yo);

float vb = (a_top[ij]+a_left[ij]+a_bottom[ij]
 +a_right[ij]+yo*a_stub[ij])*va;

 a_top[ij] = vb - a_top[ij];
 a_left[ij] = vb - a_left[ij];
 a_bottom[ij] = vb - a_bottom[ij];
 a_right[ij] = vb - a_right[ij];
 a_stub[ij] = vb - a_stub[ij];
});
Listing-3: TLM scattering procedure in C++ AMP.

Proceedings of the 37th Canadian Medical and Biological Engineering Conference – 2014

//======================================
// C++ AMP implementation of impulse transfer
//======================================
parallel_for_each(a_top.extent, [&,M,N](index<2> ij) restrict(amp)
{
 index<2> ip1(ij[0]+1, ij[1]), jp1(ij[0], ij[1]+1);
 if (ij[0]<M) { float temp = a_right[ij];
 a_right[ij] = a_left[ip1];
 a_left[ip1] = temp;
 }
 if (ij[1]<N) { float temp = a_bottom[ij];
 a_bottom[ij] = a_top[jp1];
 a_top[jp1] = temp;
 }
});
Listing-4: TLM impulse transfer procedure in C++ AMP.

//==
// C++ AMP implementation of simple boundary operation
//==
parallel_for_each(a_top.extent, [&,M,N](index<2> ij) restrict(amp)
{
 index<2> ip1(ij[0]+1, ij[1]), jp1(ij[0], ij[1]+1);

 if (ij[0]<M && a_hRefl[ij]!=NO_BOUNDARY) {
 float temp = a_right[ij] * a_hRefl[ij];
 a_right[ij] = a_left[ip1] * a_hRefl[ij];
 a_left[ip1] = temp; }
 if (ij[1]<N && a_vRefl[ij]!=NO_BOUNDARY) {
 float temp = a_bottom[ij] * a_vRefl[ij];
 a_bottom[ij] = a_top[jp1] * a_vRefl[ij];
 a_top[jp1] = temp; }
});
Listing-5: TLM impulse reflection operations in C++ AMP.

//========================
// Transfer data on GPU to CPU
//========================
extent<2> ex(XSize,YSize);
array_view<float,2> av_top(ex,*pTop);
array_view<float,2> av_left(ex,*pLeft);
array_view<float,2> av_bottom(ex,*pBottom);
array_view<float,2> av_right(ex,*pRight);
array_view<float,2> av_stub(ex,*pStub);
ap_top->copy_to(av_top);
ap_left->copy_to(av_left);
ap_bottom->copy_to(av_bottom);
ap_right->copy_to(av_right);
ap_stub->copy_to(av_stub);
Listing-6: Code segment for transferring TLM data on the GPU back
to the CPU.

ALGORITHM PERFORMANCE

The C++ AMP TLM procedures described in this paper have
been incorporated into a TLM electromagnetic field simulator. The
C++ AMP accelerated parallel TLM algorithms can run at a top
speed of 83 Gflops/second on a NVIDIA Tesla C2050 GPU. The
performance can be further enhanced by using some advanced C++
AMP memory tiling features. A discussion on this advanced
programing technique is beyond the scope of this paper. Readers
interested in this technique are referred to Microsoft’s online
documentation on C++ AMP, [7].

CONCLUSION

An accelerated massively parallel TLM engine has been
incorporated into a TLM simulator. The software can run at
a top speed of 83 Gflops/second on the NVIDIA Tesla C2050
GPU which is two orders of magnitude faster than an
equivalent CPU version running on an Intel i7 processor. The
performance can be further enhanced by using C++ AMP
memory tiling controls. A graphical user interface for
biomedical modeling of human model and multi-physics
capabilities are being developed for this GPU accelerated
TLM solver.

REFERENCES

[1] W.J.R. Hoefer, “The transmission-line matrix method — theory and
applications”, IEEE Trans. on Microwave Theory and Techniques, vol.
MTT-33, no.10, pp. 882–893, October 1985.

[2] F.V. Rossi, P.P.M. So, N. Fichtner and P. Russer, “Massively Parallel
Two-Dimensional TLM Algorithm on Graphics Processing Units”,
pp. 153 – 156, IEEE MTT-S International Microwave Symposium,
Atlanta, Georgia, June 15 – 20, 2008.

[3] P.P.M. So, “Numerical modeling of electromagnetic structures with
TLM on NVIDIA graphics processors”, pp.885–887, IEEE Asia Pacific
EMC Symposium, Beijing, 12–16 April 2010.

[4] P.P.M. So, K. Caputa, and M.A. Stuchly, "Peripheral nerve stimulation
by gradient switching fields in MRI", Proceedings of the 25th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society, Cancun, Mexico, pp. 3771–3774, 17-21 September
2003.

[5] P.P.M. So, M.A. Stuchly, and J.A. Nyenhuis, "Peripheral nerve
stimulation by gradient switching fields in magnetic resonance
imaging", IEEE Trans. Biomed. Eng, Vol. 51, No. 11, pp. 1907–1914,
Nov. 2004.

[6] C. Furse, D.A. Christensen, and C.H. Duney, “Basic Introduction to
Bioelectromagnetics”, Table A1, pp. 254, CRC Press, 2009.

[7] Microsoft C++ AMP documentation,
http://msdn.microsoft.com/en-us/library/hh265137.aspx, {2014-02}

	Introduction
	THE TRANSMISSION LINE MATRIX METHOD
	Modeling of material and boundary properties
	Modelling of Bioelectromagnetic Effects
	Algorithm Performance
	Conclusion
	References

