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INTRODUCTION 

The application of computer technology in 
Minimally Invasive Surgery (MIS) has provided 
numerous advantages for both patient and 
surgeon. A particular focus, namely designing 
an interactive surgeon computer interface (SCI) 
is crucial to image-guided surgery which can 
avoid inefficient communication between 
surgeons and their assistants. Moreover, a 
suitable SCI is capable of providing visual 
enhancement to facilitate surgeons with patient 
data management and surgical strategy 
planning by being combined with augmented 
reality (AR) technique. 

In general, both open surgery and MIS type 
surgeries are performed in various operating 
theaters. In open surgery, surgeons are free to 
use their hands to contact medical data during 
surgery. However, this is not the case in MIS 
since operation is accomplished through usage 
of long-stem surgical tools. In [1], a non-
contact mouse system is designed for open 
surgery to replace standard computer mouse 
functions with hand gestures. Surgeons can put 
their hands inside a pre-defined workspace to 
interact with computer using various hand 
gestures. To assist the image-guided vascular 
surgery, [2] develops a system making use of 
Microsoft Kinect sensor to realize the touchless 
interaction between surgeons and computer. [3] 
proposes a hybrid user interface for MIS which 
is able to provide new optimal solutions for 
surgical tasks by combining orthogonal slice 
views into in-situ visualization. They then later 
develop an interactive virtual mirror providing 
desired views of the 3D object from any 
viewpoint[4]. A neural network framework is 
presented in [5] to identify and classify 
gestures of surgical tools and their motions in 
MIS.  

Compared to traditional interfaces such as 
keyboard and mouse, the above mentioned SCI 
methods have shown advantages in addressing 
aspect related to image-guided surgery. 
However, most of the above approaches require 
additional hardware such as depth sensors and 
multiple cameras. In [6], we develop a non-
robotics interactive system which can be used 
to enhance the practice of MIS without adding 
additional hardware to the surgical theater. The 
proposed SCI allows surgeons to browse 
patients’ pre-operative medical images by 
touching virtual menus which are overlaid on 
the real endoscopic scene (Figure 1). To 
provide intra-operative guidance, our system 
can also help surgeon manually register 
patient’s overlaid pre-operative images on the 
surgical scene. However, during the motion of 
endoscope, the registered images are prone to 
be lost and they need to be manually realigned 
again by surgeon. Therefore, a robust region 
tracking algorithm is necessary to tackle the 
endoscope motion problem during MIS [7]–[9].  

In this paper, we explore the feature-based 
endoscopic region alignment based on our 
proposed non-robotics system. First we present 
an overview of our interactive SCI and then we 
provide some preliminary study for Augmented 
Reality (AR) in in-vitro environments. The basic 
idea of in-vivo implementation is stated 
including some related aspects of the theory of 
Scale Invariant Feature Transform (SIFT) and 
its application related to the surgical scene.  

OVERVIEW OF INTERACTIVE SCI 

In [6] and [10], a non-robotics system is 
developed on Visual Studio 6.0 platform 
working for monocular endoscope. The system 
consists of the surgical tool tracking algorithm 
and the interactive SCI. OpenCV is applied for 
video frame processing and tracking calculation. 
For interactive SCI, OpenGL is used to overlay 
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virtual graphics on the real endoscopic scene 
and to render 3D reconstructed surgical tool 
model during tracking. Once the surgical tool 
moves in the camera view, its features such as 
tool’s tip and two edges are detected by the 
image processing module. The location of the 
tool is then computed from these features and 
is sent to the tracking module.  

One example for the interactive events is to 
allow the surgeons to browse patient’s pre-
operative images without moving their eyes 
from endoscopic scene on monitor (Figure 1, 
2a). Besides activation for image browsing, the 
surgeon can also manipulate a virtual object 
using the surgical tool to match a pre-defined 
target. Figure 2b illustrates the manually 
registration procedure. The white organ mesh is 
the pre-defined target. The orange virtual liver 
is ‘sticking’ on the surgical tool. The task for the 
user is to use the surgical tool as a “joystick” in 
order to displace the virtual liver to match with 
the target.  

PRELIMINARY IN-VITRO AR STUDY 

Before we study the application of AR to the 
actual surgical tasks, a preliminary in-vitro 
study is conducted. Here, a simple marker-
based AR system is developed on a mobile 
platform (namely, Blackberry Playbook 
platform). The reason for selecting a mobile 
device is that its camera movements can easily 
be configured to replicate the expected 
movements of the endoscope used in real MIS 
situations. Generally, a basic marker-based AR 
system contains the following components: (1) 
image acquisition; (2) marker detection; (3) 
virtual-real object alignment; (4) augmented 

image display. The marker is regarded as the 
region of interest (ROI) in camera view which 
can be used to navigate the virtual object to its 
position in real world image.  

The marker detection method in our study is 
composed of image pre-processing, image 
segmentation and corner detection. In pre-
processing step, a Gaussian smooth filter is 
applied on the whole image to eliminate the 
noise from input. The binarization of the blurred 
image is to highlight the marker’s structure and 
the border between marker and background. 
Edges of the marker are identified using Canny 
detector and its corners are extracted by Harris 
corner detection algorithm[11]. Geometrical 
approaches are applied to extract other 
features of the marker including its outer 
border and inner structure. Figure 3a1 and 3a2 
show the detected results in different camera 
view. The corners are indicated as crosses 
where blue is for outer corners, yellow is for 
inner corners and green is for the marker’s 
center. The border of the marker is labeled in 
thick green line. Specifically, blue line and red 
line represent the X-axis and Y-axis of marker 
frame respectively. To study how to integrate 
3D virtual object with real environment, we 
attempt to overlay a virtual cube on the marker. 
The center of the cube is defined to coincide 
with that of the marker and they share the 
same orientation. Figure 3b1 and 3b2 display 
the virtual cube under different camera views.  

 

 

 

Figure 1: The interactive SCI presented in our 
previous work. It shows the case when ‘XRAY’ 
option is selected, the Xray image is shown in 
the right. 

Figure 2: Snapshots of interactive events 
through our SCI. (a) Pre-operative image 
browsing example. When the tool moves, the 
image is always shown on the tool’s tip position. 
(b) Virtual object-target registration example. 
The user can manually register the orange liver 
to the white target by using the tool.  

(b) (a) 
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IN-VIVO IMPLEMENTATION BASED ON 
SIFT 

To explore the idea of AR application to real 
MIS scene, the problem we have to face is the 
connection between virtual object and actual 
surgical scenes. In our preliminary in-vitro 
study, the binary marker is used as the 
landmark for locating the virtual object. 
However, this method is not possible in MIS 
because it’s impossible to put such a marker 
inside patient’s abdominal cavity. An alternative 
method is to consider some specific regions in 
human’s body as the ‘marker’. As a result, we 
can locate the virtual object such as patients’ 
image data or the virtual tissue/organ model on 
this ‘marker’. When the endoscope view 
changes, the ‘marker’ is able to be detected 
between the image frames so that the overlaid 
virtual object can be tracked between video 
streams. One challenge in region alignment 
between frames is how to match the same 
region across two images where the scale and 
orientation of the region are changed. To solve 
region alignment problem, we apply one of the 
popular image matching algorithm SIFT[12] in 
this paper. The keypoints, which are the 
features of region invariant to image scale, 
translation and rotation, are extracted and 

given distinctive descriptors in different frames. 
The keypoint descriptor contains not only the 
position but also the orientation of the keypoint 
and can be used to identify each keypoint from 
another. By matching the keypoint descriptors 
between frames, it is possible to track the same 
region with these keypoints.  

The SIFT algorithm is composed of building 
Gaussian scale-space, detecting and locating 
keypoints, assigning reference orientation to 
keypoints and producing keypoint descriptor. 
To obtain scale invariance, a multi-level scale 
space is created by down-sampling. For each 
octave (i.e. each level), the image is smoothed 
by a stack of Gaussian kernels with different 
variances so that there are a set of blurred 
images in each octave. To detect the local 
extrema in scale-space, the difference-of-
Gaussian(DoG) images are produced by 
subtracting adjacent Gaussian images in each 
octave. Maxima and minima of DoG images are 
detected by comparing the current pixel with its 
26 surrounding neighbors. These neighbors are 
from the current scale and adjacent scales as 
well. To make the keypoints rotationally 
invariant, gradient computation of a keypoint 
neighborhood is implemented. For a given 
image I, the magnitude of pixel (x,y) is 
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where ,x yI is the intensity value of pixel (x,y). 
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For each sample point around a specific 
keypoint, its orientation is weighted by its 
magnitude. An orientation histogram is used to 
classify these computed orientations into 
different directions. The highest peak in the 
histogram is selected as the dominant direction 
for the specific keypoint. To uniquely identify 
one keypoint to another, a keypoint descriptor 
is assigned to each keypoint. In [12], a 128-
element feature vector is designed for each 
keypoint. This keypoint descriptor comes from 
a 16x16 sample array around each keypoint. It 
contains the gradient magnitude and 
orientation distribution in its keypoint 
neighborhood. To find the best matching 
keypoint between frames, we measure the 

Figure 3: Example of marker-based AR system 
results. (a) Marker’s border and orientation are 
detected under different camera views. (b) 
Overlay a virtual cube on real world scene 
according to the detected marker. 

(b1) (b2) 

(a1) (a2) 



Euclidean distance for two 128-element 
descriptors. The keypoint with minimal distance 
is considered as the best matching one.  

To test SIFT algorithm [13] in in-vivo 
application, we select 10 352x240 sample video 
streams containing real surgical scenes. Due to 
the high computation cost, we extract 20 
frames from each video stream for the offline 
experiment. For each image pair, it takes about 
5~6s to run the matching. Figure 4 is the 
example of region matching in various frames. 
The green circle with the green line segment 
represents the keypoint descriptor. The size of 
the circle indicates the magnitude of the 
keypoint while the direction of the circle is the 
keypoint’s orientation. The matching keypoints 
are connected by red line.  

 

DISCUSSION AND CONCLUSION 

In this paper, we present a brief overview 
of our interactive SCI which can realize some 
simple manipulation of virtual object using the 
surgical tool. A basic marker-based AR system 
is presented in our preliminary study to overlay 
a virtual cube on the detected marker under 
different camera views. To explore the AR 
technique into real surgical scene, a feature-
based matching method SIFT is applied to align 
regions under various endoscope viewpoint. 
From the experimental results, SIFT method 
can basically match regions in real surgical 
scenes. However, this method is time- 

consuming which is not suitable for the real- 
time implementation. In the future work, an 
affine invariant extension of SIFT(ASIFT) will be 
tested in in-vivo environment. The ASIFT is 
able to enhance its performance under 
substantial viewpoint change and reduce the 
complexity of the original SIFT. Other 
algorithms such as Simultaneous Localization 
and Mapping(SLAM) and Random Sample 
Consensus(RANSAC) can also be tested on the 
real surgical scene and combined with AR 
display.  
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Figure 4: SIFT application in real surgical scene. 
Two examples are given in two rows 
respectively. SIFT can mostly match the moving 
regions in two different frames.  


