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INTRODUCTION 

Several medical conditions can limit the 

ability of visually impaired people to obtain 

information about their environment. Such 

information is critical for an effective 

navigation. Remote sensing of objects could 

allow users to detect and avoid obstacles and 

enrich their perception. 

One of the potential applications of a Multi

Modal Interface (MMI) is the use as 

navigation aid for visually impaired people. 

Zöllner et al. [1] developed a navigation

for blind users using in a depth

attached to a helmet to measure the distance 

of objects in front of the user. Th

provided haptic feedback using a wearable belt

Other authors have developed techniques 

remotely locate objects and people using 3D 

image processing for partially or totally blinded 

people using visual, auditory and tactile 

feedback [2-4]. 

Many MMI systems rely on hand gestures as 

an input. Several approaches have been 

proposed for hand gesture recognition. 

used stereo vision for gesture detectio

while Prisacariu [6] and Wang [7]

color based segmentation techniques for

hands and color gloves to deal with the 

background segmentation problem

cameras. 

In this paper we present the

multimodal user interface based on 

to gather spatial information (Microsoft Kinect) 

from a scene, a haptic glove with vibrotactile

feedback and a gesture recognition system to 

map the location, dimensions and shape of 

sample objects into the user hands

The user can perceive the shape, location and 

dimensions of the remote objects by moving 

the glove inside a scanning region. A marker 

detection camera provides the location and 
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Several medical conditions can limit the 

ability of visually impaired people to obtain 

environment. Such 

information is critical for an effective 

emote sensing of objects could 

to detect and avoid obstacles and 

One of the potential applications of a Multi-

Modal Interface (MMI) is the use as a 

navigation aid for visually impaired people. 

a navigation MMI 

using in a depth camera 

attached to a helmet to measure the distance 

user. The system 

haptic feedback using a wearable belt. 

Other authors have developed techniques to 

locate objects and people using 3D 

image processing for partially or totally blinded 

using visual, auditory and tactile 

Many MMI systems rely on hand gestures as 

an input. Several approaches have been 

or hand gesture recognition. Lee 

detection [5] 

[7] developed 

sed segmentation techniques for bare 

and color gloves to deal with the 

background segmentation problem using video 

In this paper we present the design of a 

based on a 3D sensor 

(Microsoft Kinect) 

th vibrotactile 

and a gesture recognition system to 

map the location, dimensions and shape of 

sample objects into the user hands (Figure 1). 

The user can perceive the shape, location and 

dimensions of the remote objects by moving 

a scanning region. A marker 

detection camera provides the location and 

orientation of the user hand (glove) to map the 

corresponding tactile message. Additionally a 

gesture recognition subsystem was 

implemented providing the option to interac

and control active elements such computer 

interfaces or automated devices. 

SYSTEM OVERVIEW

The conceptual diagrams of our proposed 

MMI system concept in shown in 

system has four main components:

Location Subsystem, b) Gesture Subsystem, c) 

Depth Imaging Subsystem and d) A Haptic 

Glove. 

 

 

 

 

 

 

 

Figure 1: Subsystem architecture: Bracelet 

Location subsystem (a), Gesture subsystem 

(b), Depth subsystem (c) and Haptic subsystem 

components (d)

Each module was designed 

collect metrics which can be used 

the performance each sub
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orientation of the user hand (glove) to map the 

corresponding tactile message. Additionally a 

gesture recognition subsystem was 

implemented providing the option to interact 

active elements such computer 

interfaces or automated devices.  

YSTEM OVERVIEW 

conceptual diagrams of our proposed 

shown in Figure 1 The 

components: a) Bracelet 

bsystem, b) Gesture Subsystem, c) 

Depth Imaging Subsystem and d) A Haptic 

: Subsystem architecture: Bracelet 

Location subsystem (a), Gesture subsystem 

(b), Depth subsystem (c) and Haptic subsystem 

components (d). 

designed and evaluated to 

collect metrics which can be used to measure 

each sub-system will 

 



contribute to the overall performance. Figure 2 

shows a diagram of the experimental setup. 

A Kinect camera capture images of the 

sample objects placed on the platform. In the 

same figure it is shown the “object sampling 

region” under a green pyramid (green dotted 

line). The Kinect sensor covers the sampling 

region of the table within the field of view of 

the camera Objects placed on top of the 

sampling region can be measured and classified 

according to some basic geometrical shapes by 

the depth subsystem. 

 

Figure 2: The experimental setup. 

Connected below the Kinect sensor is a 

grayscale 2D camera with an infrared LED 

ringlight to provide coaxial illumination. The 

field of view of this camera covers the “haptic 

display and gesture region”. Within this region, 

shown in Figure 2 as a red-dotted pyramid, the 

user is able to present different gestures or 

hand poses, the gesture subsystem is able to 

identify the gesture displayed from the 

vocabulary of gestures to trigger events in the 

computer platform. 

With the data provided by the 3D and 2D 

subsystems, it is possible to build a map of 

haptic stimuli. This map of vibrotactile 

sensations is presented to the user as feedback 

data with the activation of the tactons on the 

glove. Each motor can be activated and 

modulated independently according to the 

required information to be displayed. By 

moving the hand, in a scanning motion along 

the haptic region, it is possible to display haptic 

messages corresponding to different areas of 

the sampling region. Data measured from 

objects placed on the sample platform can be 

encoded as tactile stimuli on the haptic display 

area. 

BRACELET LOCATION SUBSYSTEM 

 

 

 

 

 

 

 

 

Figure 3: Bracelet and glove under IR 

illumination (a). Distance between markers 

measurements (b). Bracelet is used to estimate 

the location of the wrist of the user in 3D 

coordinates (c). Plot of the error in computed 

3D location Vs. ground truth of the bracelet (d). 

Segments of reflective tape on the bracelet 

with a constant separation provide an invariant 

feature to compute the distance between the 

bracelet and the camera using a pinhole 

camera model. With this information it is 

possible to calculate the position of the bracelet 

(and the wrist of the user) in a 3D space 

representation. 

To improve the precision of the 

measurements, it was required to estimate 

distortion parameters in the camera-lens 

assembly. Camera calibration algorithm [8, 9] 

was used to rectify images reducing lens 

distortion effects in the two cameras used. 

In a raw image, reflective elements 

corresponding to the glove and bracelet are 

present (Figure 3.a). The location routine starts 

with the identification of bracelet markers. 

These elements are isolated based on combined 

properties of individual blobs and blobs pairs. 
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Once the “best candidates” from 

the bracelet are selected, the distance in pixels 

between the markers close to the center of the 

bracelet is measured and evaluated using the 

pinhole camera model equation (Figure 3

 Using the known feature, and the focal 

length, the pinhole model provides an estimate 

of the distance between the wrist of the user 

and the camera. The system is able to compute 

the 3D position of the bracelet with an

error of 22.07mm and a standard deviation of 

11.55mm with respect to the World frame. 

Figure 3.d shows the error vector

bracelet position in space. 

GESTURE SUBSYSTEM

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Gesture recognition system. A square 

pattern on the hand is used to a

perspective correction (a) and (b)

position and orientation between computed 

values and ground truth (c) (d) and (e).

A pattern of reflective tape fixed to the 

glove is used to compute the position and 
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ndidates” from 

selected, the distance in pixels 

o the center of the 

measured and evaluated using the 

Figure 3.b). 

, and the focal 

provides an estimate 

of the distance between the wrist of the user 

he system is able to compute 

the 3D position of the bracelet with an average 

error of 22.07mm and a standard deviation of 

11.55mm with respect to the World frame. 

Figure 3.d shows the error vectors for the 

GESTURE SUBSYSTEM 

 

recognition system. A square 

pattern on the hand is used to apply 

(a) and (b). Error in 

position and orientation between computed 

values and ground truth (c) (d) and (e). 

A pattern of reflective tape fixed to the 

pute the position and 

orientation of the hand in 3D space

that the observed pattern is under perspective 

deformation it is possible to recover the original 

square shape. Figure 4.a show the process of 

assigning a frame to the “candidate” square 

region. To compute the perspective 

transformation, the four corners of a 

trapezoidal figure are used.  

Perspective correction is applied to the hand 

image (using the inverse perspective 

transformation) to obtain a normalized image in 

size, rotation and perspective.

regions of interests is applied over the 

normalized image to count the number of 

fingers displayed in the gesture (Figure 4.b).

 

 

 

 

 

 

 

 

 

 

Figure 5: The depth image of sample objects 

(a)(b). Objects are mapped in an orthogonal 

representation (c). Tactile representation of the 

sampled object (in orange and red) (c). 

Vibrating elements in the glove (d)

Different hand poses are combined in time 

to assemble dynamic gestures. The “Double 

click” of a mouse can be implemented by a 

rapid sequence of close-hand and open

transition. 

 

in 3D space. Assuming 

that the observed pattern is under perspective 

deformation it is possible to recover the original 

square shape. Figure 4.a show the process of 

assigning a frame to the “candidate” square 

To compute the perspective 

he four corners of a 

 

Perspective correction is applied to the hand 

using the inverse perspective 

to obtain a normalized image in 

size, rotation and perspective. A fixed mask or 

is applied over the 

malized image to count the number of 

fingers displayed in the gesture (Figure 4.b). 

Figure 5: The depth image of sample objects 

(a)(b). Objects are mapped in an orthogonal 

representation (c). Tactile representation of the 

sampled object (in orange and red) (c). 

Vibrating elements in the glove (d) 

Different hand poses are combined in time 

dynamic gestures. The “Double 

click” of a mouse can be implemented by a 

hand and open-hand 

 



Experiments using a pool of images 

previously recorded reported an average error 

in 3D location of 45.42 mm with a standard 

deviation of 24.69mm. Location error is plotted 

in Figure 4.c. Additionally, average error in 

pitch, yaw and roll angles were 11.4, 3.42 and 

10.1 degrees respectively. The gesture 

recognition rate was 87.3% 

DEPTH IMAGING SUBSYSTEM AND HAPTIC 

INTERFACE 

Depth images from the 3D camera are 

processed to find the dimensions and position 

of the samples on the table. Figure 5.a shows 

the contours of 2 objects using background 

subtraction. The found contours are analyzed in 

detail to find the higher points that describe the 

height of the objects 

Objects are modeled as a volume with 

constant section along its height. They are 

mapped in an orthogonal frame representation 

with respect to the World frame {W} (Figure 

5.c). A tactile representation of the sampled 

objects (in orange and red) (Figure 5.c) is 

displayed to the user activating the tactons in 

the glove. When the user’s hand “penetrates” 

the volume corresponding to one particular 

sample, the motors are activated indicating 

such condition. 

The performance of the depth system was 

tested using 8 different objects with different 

height and section. The average error in the 

determination of the height of the objects is 

27.71 mm. The average width error is 

25.11mm and the depth average error is 31.17 

mm. (measured in local object coordinates). 

The position of objects, measured from the 

World frame of the system reported an average 

error of 43.27mm in the Y axis and 35.90 and 

29.48 in X and Z axis of {W}.  

DISCUSSIONS AND CONCLUSIONS 

Both bracelet and gesture systems provide 

information about the position of the user hand 

in the 3D space. It was shown that the error of 

the former system was smaller than the latter 

(22.0 Vs. 45.42mm). In spite of this, the 

gesture detection approach provides a useful 

tool to compute the orientation of the hand 

frame in space and normalized hand recognition 

in size, orientation and perspective.  

The gesture detection failed in cases where 

the pitch or roll of the hand is out of the -65, 

+65 degrees range. Under this condition the 

reflectivity gain of the markers is reduced over 

5 decibels making it difficult to find the hand 

pattern. Yaw angle can be computed with a 

small error in any case where the hand pattern 

is found. 

Users could distinguish between samples at 

different locations based on the haptic 

feedback. Distance perception was reduced 

when samples were close to each other (under 

10cm). Objects with different heights were 

identified properly. The success of recognition is 

higher when samples have more than 6cm of 

difference in height. Shape recognition was not 

determinant in object identification  
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