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INTRODUCTION 

Understanding a patient’s respiratory health 
is an important task, especially in critical care 
settings like intensive care units (ICUs). Clinical 
parameters such as chest wall compliance (Ccw) 
and work of breathing (WOB) are important to 
monitor, because they provide insight into a 
patient’s respiratory mechanics and aid in 
treatment planning [1], [2]. For many of the 
aforementioned parameters, the pleural 
pressure (Ppl) must be measured [1]. However, 
direct measurement of Ppl can be risky due to 
the invasive procedure required to obtain the 
measurement, and may result in a collapsed 
lung (i.e. pneumothorax) [3]. Recent research 
surveys have suggested that using esophageal 
pressure (Peso) as a surrogate for Ppl has 
significant potential for clinical use [1], [4]. 

   The Peso signal is measured using a 
pressure transducer via an air-filled balloon 
connected to the distal end of a catheter [4]. 
The balloon catheter is inserted through the 
nostril and placed in the lower third of the 
esophagus [4]. Pressure changes observed in 
the measured Peso signal are mostly in part due 
to respiratory mechanics [2]. However, due to 
the close proximity of the balloon catheter to 
the beating heart, small oscillatory pressure 
fluctuations known as cardiogenic oscillations 
(CGOs) are also observed in the measured Peso 
[2].  

Interference of CGOs in the Peso poses a 
problem during respiratory health monitoring, 

because the amplitude fluctuations may result 
in inaccurate estimates of clinical parameters 
[5]. Under normal circumstances, the frequency 
range for Peso is 0.17 - 0.67 Hz, and 0.8 - 2.5 
Hz for CGO [6]. However, it has also been 
suggested that the frequency spectra for both 
signals may overlap [5], [6]. Because of the 
possible overlapping frequency spectra, 
conventional fixed filtering may not be ideal for 
CGO removal. Several research groups have 
already tried to tackle the issue of CGO removal 
using adaptive filtering schemes [2], [5], [6]. 
Owing to the periodic nature of CGO and Peso 
waveforms, an interesting approach to the 
problem is the use of adaptive signal 
decomposition algorithms to separate CGO and 
Peso.  

In this paper, we present a filtering method 
using Ensemble Empirical Mode Decomposition 
(EEMD) to suppress CGO interference in Peso 
signals obtained from a clinical setting. The 
Methods and Materials section of this paper will 
provide information about the raw clinical data 
that was used in this project; a detailed 
description of the Empirical Mode 
Decomposition (EMD) algorithm, which is the 
basis for EEMD; and an outline of how EEMD 
was used to suppress CGO interference. The 
results of the EEMD-based filtering method will 
be shown in the Preliminary Results section. 
Important observations, comments and 
potential future steps regarding the filtering 
results will be made in the Conclusions and 
Future Works section. 
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METHODS AND MATERIALS 

Dataset 

The Peso signals used in this project were 
provided by Dr. Laurent Brochard and his 
research team at St. Michael’s Hospital located 
in Toronto, Ontario, Canada. The current 
dataset consists of four signals: flow [L/s], 
airway pressure [cmH2O], esophageal pressure 
[cmH2O], and gastric pressure [cmH2O]. The 
signals were obtained from four spontaneously 
breathing patients assisted by mechanical 
ventilation at a sampling rate of 62.5 Hz. The 
duration of the signals vary in the range of 1 to 
2 minutes.  

Empirical Mode Decomposition (EMD) 

The EMD algorithm is a popular data 
analysis method proposed by Huang in the late 
90s [7]. Over the past two decades, the 
algorithm has been applied in various research 
areas to adaptively decompose time series data 
into a finite set of zero-mean AM-FM 
components [8]. What makes the algorithm 
popular among researchers is the fact that EMD 
performs the decomposition without assuming 
linearity and stationarity of the data [7], [8]. 
Furthermore, the algorithm is entirely data 
driven; unlike tools such as the Fourier and 
Wavelet transforms that rely on basis functions, 
EMD decomposes the time series based on 
intrinsic properties of the data [7].  

The extracted AM-FM components described 
previously are known as intrinsic mode 
functions (IMFs), which represent the 
oscillatory modes embedded in the data [7], 
[8]. While the IMFs allow for the calculation of 
instantaneous frequency via the Hilbert 
Transform [7], it has been suggested that the 
IMFs are also related to specific physical 
phenomena present in the measured data [9]. 
Since EMD is capable of decomposing non-
linear and non-stationary signals into 
components that may represent physical 
phenomena, the algorithm has been used 
successfully in many applications related to 
biomedical signal processing [9], [10]. 

According to [7], the extracted 
components must satisfy two conditions to be 
considered an IMF:  

1. The number of extrema and the number 
of zero crossings may only differ by one. 

2. The mean value between the envelopes 
generated by the local maxima and local 
minima must be zero at all times. 

The IMFs are obtained by performing EMD on a 
given signal, x(t), through the sifting process 
[7]. The EMD algorithm and the sifting process 
are described as follows [7], [8]: 

1. Identify all local maxima and minima in 
x(t). 

2. Generate the upper envelope, xmax(t), 
and lower envelope, xmin(t), using the 
maxima and minima, respectively.  

3. Calculate the point-by-point mean 
between the upper and lower envelopes:  

m(t) = [xmax(t)+xmin(t)]/2 
4. Subtract m(t) from x(t) to obtain a 

potential IMF, h(t): 
h(t) = x(t) – m(t) 

5. Check the properties of h(t): 
a. If h(t) satisfies the conditions to be 

considered an IMF, calculate the 
residual: r(t) = x(t) – h(t) 

b. Otherwise, replace x(t) with h(t) 
and iterate through steps 1 to 5 
until h(t) satisfies 5.a.  

6. Repeat steps 1 to 6 until the residual, 
r(t), satisfies a predefined stopping 
criteria. 

The original time series signal, x(t), can then 
be represented as a sum of the IMFs, hi (t) for 
i=1..n, and the residual, r(t): 

  x(t) = Σ hi (t) + r(t) 

Ensemble EMD (EEMD) 

Although EMD has been quite successful in 
many fields, a major obstacle associated with 
the algorithm is the concept of mode mixing 
[11]. Mode mixing occurs when a single IMF 
contains more than one oscillatory mode, which 
results in a loss of physical meaning for the IMF 
[9], [11]. To overcome the mode-mixing 
problem, Wu and Huang [11] developed a 
noise-assisted data analysis method known as 
Ensemble EMD (EEMD). The EEMD method 
decomposes a signal into its IMFs via EMD over 
several trials [11], [12]. White noise with finite 
amplitude is added to the original signal at the 
start of each trial before proceeding with EMD, 
which results in an ensemble for each IMF [9], 
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[11]. The ensemble average for each of the 
corresponding IMFs are taken, which are then 
treated as the true IMFs [15]. The addition of 
white noise during the process ensures that no 
scales are missing, thereby overcoming the 
problem of mode mixing [11], [12]. The true 
IMFs do not contain the injected white noise as 
they are cancelled out during the ensemble 
averaging [9], [11]. 

Suppression of Cardiac Oscillations 

As mentioned previously, the main form of 
interference observed in Peso signals are 
cardiogenic oscillations (CGOs) caused by the 
beating heart. While various pressures acting 
on the esophageal balloon may influence the 
measured signal, Pmeas, the work presented 
here assumes that Pmeas contains only two 
components superimposed on each other: the 
esophageal pressure (Peso) and the cardiogenic 
oscillations (PCGO). The assumption can be 
described by the following equation: 

Pmeas = Peso + PCGO 

In order to suppress the cardiogenic 
oscillations from the measured signal, the 
EEMD algorithm was used to decompose Pmeas 
into its IMFs. The number of ensemble trials 
used in the decomposition was fixed at 100 to 
maintain a sufficiently good SNR while reducing 
computational complexity [12]. The amplitude 
of white noise injected into each trial was fixed 
at 0.02. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The block diagram of the EEMD-based 
filtering method. 

Based on the frequency characteristics of 
Peso and PCGO as mentioned in the Introduction 
and summarized in [6], the two components 
were expected to appear in different IMFs: Peso 
in the IMFs representing lower frequency 
bands, and PCGO in the IMFs with higher 
frequency bands. The IMFs containing 
frequency components related to PCGO were 
ignored during reconstruction, which resulted in 
suppression of the cardiac interference. The 
block diagram for the proposed method is 
shown in Figure 1. 

PRELIMINARY RESULTS 

Figure 2: The resulting 11 IMFs obtained from 
applying EEMD to the Peso signal for patient 
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Figure 3: The original signal (blue) and its 
frequency spectrum compared to the filtered 
result using proposed method (red) for two 

patients. 

CONCLUSIONS AND FUTURE WORKS 

After decomposing the measured Peso signal 
into its IMFs as shown in Figure 2, our clinical 
collaborators identified the first three IMFs as 
noise and CGO interference through visual 
inspection. The last two IMFs represent the 
residuals of the signal and correspond to low 
frequency drifts. The initial observations 
mentioned previously are consistent among the 
four patients in the current dataset. Thus, IMFs 
4 to 9 were used during the reconstruction 
process while the remaining IMFs were ignored. 
The resulting Peso signals in red shown in Figure 
3 have very little amplitude fluctuations when 
compared to the original measured Peso in blue. 
A comparison between the frequency spectra 
shows that the higher frequency components 
associated with CGO are completely removed 
while maintaining Peso frequency components. 

Although the proposed technique shows 
promising preliminary results, several steps will 
be taken to further refine the method. To 
ensure that the proposed method is robust, the 
dataset must be expanded to include more 
patients. An automatic IMF selection method 
must also be developed to identify and select 
relevant IMFs for reconstruction.  
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