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ABSTRACT 

In 2006, we presented a MATLAB tool called 

Myosim, which allows users simulate signals 

measured through surface electromyography 

(SEMG) [1].  Based on user input, the tool sets 

generative model parameter values such as the 

geometry of each fibre in each motor unit 

relative to the electrode location, the number of 

motor units, the number of fibres per motor unit, 

conduction velocity and firing statistics. Using 

the parameter values, the tool then outputs an 

SEMG signal based on a finite length model of 

muscle and a convolution between action 

potential source and tissue filter.  Recently we 

have made updates to the tool which improve 

the underlying model used to generate the 

signal, and allow users to add instrumentation 

effects associated with the data capture process 

including baseline noise, band-pass filtering, and 

quantization.  We have also used a genetic 

algorithm to select generative model parameter 

values which optimize matching between real 

and simulated signals, to validate that the tool 

produces output representative of EMG. 

INTRODUCTION 

Myosim is a user friendly SEMG simulation 

tool developed by MacIsaac, Rogers and 

Bhandarkar using MATLAB [1]. In short, the tool 

uses a finite length model of muscle proposed by 

González-Cueto and Parker [2] to model a single 

fibre action potential (SFAP) as observed at the 

surface of the skin. The model convolves a 

double layer differential source, originally 

proposed by Plonsey [3], with a tissue filter that 

considers various geometric and physiological 

parameters of the fibre to produce SFAP.  The 

SFAP are then summated to form motor unit 

action potentials (MUAPs) which can be 

convolved with impulse trains and summed to 

form SEMG signals. 

The original tool (Myosim 1.0) had a few 

limitations: 1) it produced signals with 

normalized amplitudes (ie scaled from 0 to 1), 

2) because of random variation built into 

parameter settings, it was difficult to explicitly 

and completely control model parameters (for 

example, in reproducing identical signals), and 

3) it ignored the influence of data capture in the 

output.  Also, besides informal observation by 

SEMG experts, output from the simulation tool 

had never been directly compared with 

measured recordings to validate that it matched 

signals measured through SEMG.  In this work, 

we made improvements to Myosim 1.0 to 

overcome the limitations. To test the validity of 

the upgraded tool (Myosim 2.0), we used a 

genetic algorithm to optimise the generative 

parameter values to match a particular signal, 

measured in vivo (ie. recorded). We then 

compared features of the recorded signal to the 

features of the simulated signal. 

METHODS 

Tool improvements 

Adjusting Internal Model Parameters 

In Myosim 1.0, the amplitude of the SFAPs 

were normalised and a few other internal model 

parameters were nominally set. Thus, the 

amplitude of the generated SEMG signals could 

not be easily compared to records. Previous 

studies that used this tool mostly focussed on 

metrics that did not depend on the amplitude of 

the signal, such as conduction velocity (CV) or 

mean frequency (MF). However, several other 

features, such as the mean absolute value (MAV) 

and waveform length (WL) rely on amplitude 

values. To account for this, we surveyed the 

literature to establish values for the model 
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parameters set nominally and for expected SFAP 

amplitudes. 

The internal model parameter values were 

adjusted based on values used by Van Veen and  

Rijkhoff in [4] for a similar model.  The source 

was left unadjusted from what was originally 

reported in [1].  However, the tissue filter: 
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was adjusted as delineated in Table 1.  In the 

table, 𝑘 represents an amplitude scaling factor,  

𝜎𝑙 𝜎𝑡⁄  represents anisotropy, 𝜎𝑖 and 𝜎𝑒 represent 

intracellular and extracellular conductivities, and  

𝜃 represents a constant ratio between fibre 

radius to conduction velocity. 

Table 1:  Adjusted Model Parameters 

Parameter Myosim 1.0 Myosim 2.0 

𝑘 1 500 
𝜎𝑙

𝜎𝑡
⁄  1 5 

𝜎𝑖 1 0.45 𝑠/𝑚 

𝜎𝑒 1 2.5 𝑠/𝑚 
𝜃 1 6.25 𝑢𝑠𝑒𝑐 

To adjust the SEMG signal amplitude, the 

scaling factor (𝑘) was introduced to scale SFAP 

amplitudes. To establish this factor, we 

simulated a single motor unit close to the surface 

and compared the MUAP amplitude to the values 

measured with indwelling electrodes close to a 

motor unit as reported by Buchtal et al in [5].  

Incorporating Instrumentation Effects 

Data captured through SEMG are subject to 

several instrumentation effects, including noise 

from the instrumentation, bandpass filtering, 

and quantisation.  Though these effects are 

expected to be minimal for a proper setup, 

including these effects as part of the simulation 

model may provide useful insight into the effects 

of improper instrumentation setup on SEMG 

signal features. Thus, we included options to add 

baseline noise modeled as a piecewise linear 

combination of pink and white noise as expected 

from instrumentation [6], to bandpass filter the 

signal based on low and high cut-off frequencies 

set by a user, and to quantize the signal based 

on a bit resolution provided by a user.  

Regenerating SEMG signals  

While Myosim 1.0 had the option to save 

output signals, its generative parameter values, 

and its summed components (SFAPS, MUAPs, 

impulse trains etc), it did not provide any means 

to load components back into Myosim for reuse. 

It was therefore difficult to recreate setups for 

comparison since the tool randomises several 

generative parameter values based on ranges 

specified by a user. Since such comparisons may 

be useful, for example in studies looking to 

ascertain the effects of generative parameters 

on signal features,  we added the option to load 

signal components back into Myosim 2.0 for 

reuse.  Now the tool provides the option to 

regenerate signals with a subset of components 

(eg. the impulse trains, half of the MUAPS etc.) 

from another simulated signal. 

Output Validation 

Because of the random nature of SEMG 

signals, it is difficult to verify that an SEMG 

simulator is producing signals representative of 

those collected through SEMG.  Since the values 

of the generative parameters driving a real 

signal are unknown,  it is impossible to know 

what generative parameter values to set when 

comparing a simulated output to a real signal.  

To offer some support for the validity of Myosim, 

we used a genetic algorithm (GA) to provide a 

set of generative parameter values optimized to 

match a simulation output with a recorded 

signal. 

A canonical GA was used with a fitness 

function defined as the mean absolute error 

(MAE) between the power spectral densities 

(PSDs) of the simulated and recorded signals.  A 

roulette wheel selector was used to select the 

fittest chromosomes for continued searching.  

Each chromosome was made up of four 

generative parameters, namely number of 

fibres, number of motor units, depth, and 

conduction velocity and the search space was 



The 41st Conference of The Canadian Medical and Biological Engineering/La Societe Canadiénné de Génie Biomédical 

limited to include values within reasonable 

physiological limits.  A nominal population of 100 

chromosomes was initially generated, and each 

search iteration included crossover at 1 point at 

a rate of 10%, and  mutation at rate of 5%.  

Search continued until a solution was found with 

a fitness score which indicated that the MAE was 

within the variation expected among power 

spectra of SEMG signals assumed to come from 

the same contraction.  To determine the 

expected variation, a long signal was simulated 

and split into segments.  The first segment was 

used as a template and the remaining segments 

were used to determine the mean MAE and 

standard deviation.  The fitness threshold was 

then set to 1.15 times the mean + 3 standard 

deviations, which yielded a threshold of about 

0.0075. 

The GA was used to match a total of 22 

recordings taken from 11 subjects at 2 

contraction levels.  These signals were collected 

as part of another SEMG study aimed at 

investigating variability in SEMG signal features.  

Signals were measured from the biceps brachii, 

with electrodes in bipolar configuration, and 

amplifiers set to bandpass the signal from 20-

500Hz.  An instrumentation amplifier with 

CMRR>100dB was used.  Signals were sampled 

at 5000Hz. 

Comparing the power spectral densities of 

the records and simulated output signals 

provides a good indication of fitness, but it 

compares only a partial representation of the 

signals.   To more completely evaluate how well 

an output signal matches a recorded one, 

several other output signal features were also 

inspected.  These features were chosen based on 

their widespread use in SEMG studies and 

include Mean Absolute Value (MAV), Mean 

Frequency (MeanFreq), Slope Sign Changes 

(SSC), Waveform Length (WL), and zero 

Crossings (ZC).  All of the features were 

calculated via the methods provided be Chan 

and Green [7].    

RESULTS 

Figure 1 compares feature values calculated 

from a recorded signal (solid dot markers) with 

feature values calculated from  a simulated 

signal with generative parameters set to match 

the recorded signal (x markers).  Each of the 

recorded signal data points comes from a 1 sec 

segment of a 5-sec record.  Each of the 

simulated signal data points come from a 1-sec 

segment of the matching simulated signal.  Each 

data point has been normalized to the mean 

value of the recorded features for visual clarity. 

This example is representative of the results 

across all 22 matches. In all cases, feature 

values extracted from the simulated signal fell 

within the same range as values extracted from 

different segments of the same recorded signal. 

 

Figure 1:  Feature values calculated from 

Recorded Signal (solid dot markers) and 

matching simulated signal (x markers) 

CONCLUSION 

When tool parameters are set appropriately, Myosim 
2.0 will produce simulated SEMG signals with features 
within the same range as recorded data.  This result 
supports the validity of Myosim as an automated 
solution for simulating signals representative of SEMG 
recordings.   
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