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INTRODUCTION 

Aging is accompanied by physical and 

functional changes in the brain, such as a 

decrease in long-term memory, inhibition, size, 

and white matter integrity [1]. PET and fMRI 

studies reported that compared to younger 

adults, older adults’ brains displayed less 

lateralization when performing the same tasks 

[2], showing an overactivation of brain regions 

not activated in younger adults [3]. This pattern 

of asymmetry reduction has been termed the 

Hemispheric Asymmetry Reduction in Older 

Adults (HAROLD) [4]; more generally this age-

related overactivation is accepted as 

compensatory, and termed the Compensation-

Related Utilization of Neural Circuits Hypothesis 

(CRUNCH) [3]. 

This age-related change in cortical 

activations from a more focused and lateralized 

pattern to be more diffused and bilateral may 

fundamentally challenge older adults’ ability to 

use brain-computer interfaces (BCI), because a 

large number of BCI methodologies are based on 

locality-dependent signal enhancement 

processing algorithms such as Common Spatial 

Pattern (CSP) and Laplacian filtering [5]. This 

may be a contributing factor in the limited 

effectiveness of BCI post-stroke rehabilitation 

methods when applied in practice [7]. Perhaps 

the effect of aging also plays a key role in the 

decreased BCI performance, in addition to the 

ailment itself.  

Stroke rehabilitation is an application in 

which BCI rehabilitation has been considered a 

promising tool. As the world population ages [8], 

noncommunicable diseases such as stroke, 

which rises in prevalence with age, is causing an 

increase in mortality and long-term disability 

[8]–[10]. 80% of stroke survivors experience 

upper limb paresis – this is the most common 

post-stroke impairment [11]. Further recovery is 

often slow even with state-of-the-art 

physiotherapy [12]. BCI stroke rehabilitation is 

a promising tool because it overcomes the 

challenges presented by current therapies; 

constraint-induced movement therapy (CIMT) or 

bilateral arm training [12] are useful strategies, 

but residual movement are required for 

therapeutic feedback [13], [14]. As BCIs are 

solely based on brain activity, it can be used 

even if patients have severe limb weakness [15]. 

BCI can support recovery by substituting the loss 

of normal neuromuscular output or inducing 

activity-dependent brain-plasticity to restore 

normal brain functions [7], [12], [16]. Many BCI 

stroke rehabilitation training leverage locality-

dependent BCI methodologies, such as SMR 

because it is related to motor movement, 

 
Figure 1 Experiment protocol for a single trial. 
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readable by electroencephalogram (EEG), and 

have a relatively high signal-to-noise ratio [7], 

[17]. However, its limited effectiveness in 

practice [7] may be due to the fact that the 

average population of BCI stroke rehab studies 

is aged 55+ [7], while the fundamental SMR 

processing algorithms were developed and 

validated on much younger populations [18]. 

While the neurophysiological changes induced by 

stroke certainly plays a role in the reduced 

effectiveness of BCI-based stroke rehabilitation, 

there is a lack of research regarding the effect of 

aging on neuroelectrophysiology and BCI. 

This work is a preliminary investigation on 

the age-related changes in EEG and its 

ramifications on the performance of BCIs based 

on sensory-motor rhythm (SMR).  

METHODS 

Participants 

11 older adults (age 56 – 83, 8 female), 11 

younger adults (age 18 – 25, 6 female). All 

participants were BCI naïve, right handed, had 

normal or corrected vision. The study was 

approved by the office of Research Ethics of the 

University of Waterloo (ORE# 21401).  

Experiment setup 
 

The protocol included 2 runs of 40 trials each 

for a total of 80 trials (40 left, 40 right). A 2-4 

min rest time was given in between runs. The 

sequence of each trial is shown in Figure 1. At -

3s (the start of each trial), a white fixation cross 

appeared lasting through the entire trial. At -1s, 

subjects received 0.2s of vibration (175 Hz) on 

both wrists as a prompt for the vibro-tactile 

sensation task. At 0s, a sustained vibro-tactile 

stimulation of 5s was applied, either to the left 

or the right side, accompanied by its respective 

visual cue. At 5s, a 1.5s rest is given, as well as 

a random 0-2s rest time to prevent habituation.  

Data analysis  

Offline signal processing was performed and 

EEG data was manually corrected for artifacts 

using EEGLAB toolbox [20]. Artifacts were 

removed in two steps: 1) removal of trails 

containing non-ocular artifacts, and 2) use of 

independent component analysis (ICA) to 

remove ocular artifact components from 

remaining epochs [19]–[21]. 

Classification 

A fourth-order Butterworth filter was applied 

to the raw EEG signals prior to further spatial 

filtering. Following, Common spatial filter was 

used prior to classification of EEG epochs into 

either left or right classes [22]. Linear 

discriminative analysis (LDA) was used for 

classification. The raw EEG data was used to 

simulate online BCI performance. Hence, no 

artifact removal was performed. Classification 

was performed with EEG data from 0 – 2s from 

each epoch. Due to the high inter-subject 

variation for discriminative frequency bands, 

sub-frequency bands were used in analysis: 

Table 1: Classification accuracy 

 Performance 
accuracy (%) 

Optimal 
Frequency 

band 

Older Adult 1 58.87  1.81 β- 

Older Adult 2 65.75  2.90 α 

Older Adult 3 63.75  3.17 αβ 

Older Adult 4 67.75  4.16 θ 

Older Adult 5 61.25  4.49 α 

Older Adult 6 55.13  4.51 η 

Older Adult 7 59.75  3.11 θ 

Older Adult 8 67.00  4.09 β+ 

Older Adult 9 83.87  2.08 β 

Older Adult 10 58.00  6.75 β- 

Older Adult 11 67.87  3.44 αβ 

Younger Adult 1 89.25  1.58 η 

Younger Adult 2 80.50  2.37 η 

Younger Adult 3 99.50  0.65 α+ 

Younger Adult 4 52.25  2.27 β 

Younger Adult 5 86.50  1.84 α+ 

Younger Adult 6 99.50  0.65 α+ 

Younger Adult 7 94.50  1.05 α+ 

Younger Adult 8 71.75  1.88 αβ 

Younger Adult 9 97.50  0.59 α+ 

Younger Adult 10 78.87  2.97 β+ 

Younger Adult 11 87.63  1.90 η 
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theta (6–8 Hz), lower alpha (8–10 Hz), alpha (8–

13 Hz), upper alpha (10 – 13 Hz), low beta (13–

20 Hz), beta (13–26 Hz), upper beta (20–26 Hz), 

alpha-beta (8 – 26 Hz), and gamma (10–16 Hz). 

10x cross validation was performed on all sub-

frequency bands to evaluate BCI performance 

[22], the frequency band with highest 

classification accuracy was selected.  

RESULTS 

The age of the two groups were significantly 

different (old: 72.0±8.07; young: 21.7±2.76 

years-old with t=21.8, p<0.001). The number of 

years of education of the two group were not 

significantly different (old: 16.2±3.0; young: 

14.8±2.67 with t=-1.25, p=0.226). 

BCI classification accuracy is reported in 

Table 1. The average left vs. right BCI 

performance is 64.57.75% for older adults, and 

85.314.1% for younger adults. The two results 

are statistically different (t(20) =-4.3, p<0.001).  

DISCUSSION 

Our BCI classification results (Table 1) 

suggest there is an age-related change in 

healthy older adults which resulted in a 

significant difference in BCI classification 

accuracy. We noticed that five out of the eleven 

younger adults had their highest classification 

accuracy in the upper alpha frequency band, 

while in the older adults there was no particular 

frequency band that consistently yielded the 

highest performance.  

The reason behind our findings may be 

explained by physical and cognitive changes in 

the brain, as well as physiological changes to the 

body as a whole. Structurally, the brain reduces 

non-uniformly in volume as one ages [23]. The 

areas that are being activated in the current 

experiment (by the left or right vibro-tactile 

stimulation) is the somatosensory cortex. These 

structures or accompanying structures have 

been affected by the process of natural aging. 

Cognitively, aging causes a decrease in 

processing speed, working and long-term 

memory, as well as functional inhibition [1]. This 

multitude of factors that accompany aging may 

contribute to the decreased BCI performance 

seen in the results. 

A recent study by Volosyak et al. [24] also 

investigated the age-related difference in BCI 

performance. They examining the accuracy and 

speed of a steady-state visual evoked potential 

(SSVEP)-based BCI spelling application, showing 

older adults have a significantly lower 

information transfer rate compared to younger 

adults [24]. Volosyak et al. attributed their 

results to smaller SSVEP amplitudes for older 

adults as well as slower reaction time and 

learning ability [24]. Our findings concur with 

their findings such that we also found a 

decreased BCI performance in the older adult 

population.  

Other factors that might have played into this 

difference include changes in scalp thickness 

[25], [26] and skin sensitivity from 

mechanoreceptor loss [27], [28]. From our 

experiments, we noticed that it took a notable 

longer time to set up the EEG electrodes for the 

older adults due to an increased scalp 

impedance. We recommend taking this into 

account in future works. 

Limitations to our research include 

alternative uncontrollable lifestyle and habits 

such as physical and cognitive exercise, which 

may have an effect on EEG [29]. 

CONCLUSION 

In summary, there is strong evidence that 

age-related changes affect the classification 

accuracy of the current BCI algorithms, such as 

CSP. This suggests future work should further 

investigate the reason(s) for such effect, to 

provide appropriate measures to complement 

age-related differences in physiology and 

electrophysiology in BCI applications intended 

for older adults.  
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