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ABSTRACT 

Facilitating independent living of individuals 

with neurological disorders, who have upper 
extremity (UE) impairment, is a compelling goal 

for our society. The degree of impairment could 

be reduced by using Electroencephalography 
(EEG) controlled assistive devices. The 

successful implementation of EEG controlled 
devices strongly relies on the capability of 

properly determining individuals’ actions. 
Therefore a preliminary study was conducted to 

evaluate the performance of a classification 
scheme based on extracting time domain 

features of the EEG signal. Specifically, the 

feature vectors were built by extracting root 
mean square (RMS), autoregressive (AR) 

coefficients and waveform length from EEG 
signals. Multi-class support vector machine 

(SVM) was used as a classifier and an 
acceptable classification error rate (less than 

14%) on average was obtained. It was 
observed that the classification of three right-

arm movements, namely rest, grasp and elbow 

flexion, was possible in principle.  

BACKGROUND 

Simple tasks of daily living, such as picking 
up, holding and placing an object or opening 

and closing the door can be challenging tasks 
for individuals with impaired upper extremities 

[1].  Brain-Computer-Interface (BCI) systems 
facilitate detecting the presence of specific 

patterns in the EEG signals related to brain 

activities such as specific movements [2]. EEG 
signals are correlated to tasks performed by 

individuals such as imagining motor 
movements, mental computation or imagining 

speech [3-6]. BCIs have shown to be 

potentially suitable for controlling assistive 
devices according to the users’ intention.  

Several EEG classification schemes have 
been proposed for controlling assistive robotic 

devices. Empirical mode decomposition for 

feature extraction was used in [7] and an 
accuracy of 91±5% and 87±5% were achieved 

when linear discriminant analysis and 
multilayer perceptron network were used. 

Extracted power of the spectral frequencies 
using a fuzzy classifier for classification of five 

mental tasks was also proposed in [8]. The 
classification efficiency of 65% to 100% was 

obtained. Multilayer perceptron back 

propagation was used in [9] and an accuracy of 
81.80% was obtained using adaptive auto 

regression. The Elman Neural Network trained 
by the resilient back propagation algorithm was 

used for classification of mental tasks and an 
accuracy of 86% was obtained [10].  

In this study, the EEG classification scheme 
was proposed to be potentially suitable for 

controlling robotic devices to assist individuals 

with impaired upper extremity specifically, right 
arm impairment. Time domain features such as 

AR model coefficients, RMS and waveform 
length were used to extract the patterns of the 

EEG signals corresponding to the specific UE 
motor movements. The extracted features were 

then used for the pattern recognition using 
machine-learning techniques.  

METHODS 

Emotiv based EEG data collection 

    This study was approved by the Office of 

Research Ethics, Simon Fraser University. Five 
healthy volunteers signed a consent form and 

participated in this study. The EEG signals were 
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collected by the wireless Emotiv 

headset (see Figure 1). The Emotiv 
headset consists of 14 EEG channels 

(www.emotiv.com). The placements of the 
electrodes used in this study were based on the 

International 10-20 locations: O2, P8, T8, FC6, 
F4, F8, AF4, AF3, F7, F3, FC5, T7, P7, O1 [9]. 

The Emotiv headset is a lightweight (200 g) 
wireless and non-invasive headset which is 

potentially suitable for portable assistive 

devices. 

Protocols 

A set of three protocols were followed to 
collect the EEG data from the volunteers. The 

protocols considered a combination of three 
arm gesture and movements including flexing 

the elbow, rest and grasping. A robotic device 
could potentially assist a large variety of 

functional movements by classifying these 

movements. The following protocols A, B and C 
were defined to compare the performance of 

the proposed EEG classification scheme with 
the performance of the   Emotiv EEG 

classification scheme. Emotiv software was 
designed to use eight seconds for training. In 

order to perform a fair comparison, eight 
seconds of data per person per protocol and 

twenty four seconds were used as training and 

testing data sets for the classification in this 
paper. 

In protocol A, as shown in Figure 2-a, the 
volunteer was asked to keep the arm at rest 

position for collecting data for rest gesture 
(pronation position of the arm). In protocol B, 

as shown in Figures 2-b, the volunteer was 
asked to apply comfortable force while grasping 

for collecting data for grasping movement 

(pronation position of the arm).  In protocol C, 
the volunteer was asked to lift the arm at 

supination position of the arm (see Figures 2-
c). The volunteer repeated this protocol for 

collecting data for elbow flexion. 

 
Figure 1: Wireless EEG headset 

 

 

 
Figure 2: Functional tasks chosen for 

classification: (a) rest, (b) grasp, (c) lift 

Feature extraction and classification 

    Feature extraction was used for the 

dimensionality reduction of the raw EEG signal. 
Extracting features from each sample of the 

raw EEG signal does not provide any useful 
information as the structural detail of the signal 

is lost [10]. The features need to be calculated 
by segmenting the raw EEG signal. The 

features were extracted from a window of 
predetermined length. Features were extracted 

from the samples by segmenting the signal into 

250 ms intervals. The feature was calculated 
from each segment and then the segment 

window was incremented by 125 ms for the 
next feature extraction. Three types of features 

were extracted from each of the fourteen 
channels.  

     AR model coefficients, waveform length and 
RMS were used to extract six features from 

each channel. Waveform length and RMS and 

provided one feature for each channel while AR 
model coefficients provided four features for 

each channel of the EEG signal. The extracted 
features provided 84 dimensional feature 

vector. The extracted AR model coefficients 
from the EEG signal were a linear combination 

of previous samples and noise. Four AR model 
coefficients are adequate for modeling bio-

information signals [11]. Therefore, four AR 

model coefficients were selected in this 
experiment. RMS of the raw EEG signal was 

also used in this experiment. RMS feature 
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provides information regarding the 

amplitude of the EEG signal. The 
waveform length was the other 

extracted feature. This feature measures the 
waveform complexity of EEG signal in each 

segment.  

The proposed classification scheme of EEG 

signal is schematically presented in Figure 3. 
The proposed classification scheme was 

performed off-line using MATLAB. The recorded 

EEG signal was normalized with its maximum 
absolute value. The features were then 

extracted for the classification purpose. For this 
experiment, SVM [12] was selected among all 

the other classifiers. SVM is a well-known 
classifier suitable for pattern recognition of bio-

information signals [13]. The advantage of 
using SVM for the proposed EEG classification 

scheme is that SVM works well in high 

dimensional spaces. In addition SVM has shown 
good classification results in many practical 

applications [14]. SVM is a supervised learning 
method and produces a model which predicts 

the class labels of the unseen data. SVM [12] 
requires solving the following optimization 

problem presented by (1): 
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where a represents adaptive model parameters, 

c>0 is the penalty factor, wi is the label 
associated with a data point, y is the learned 

model, i  is the slack variable, xi is data point 

and N is the number of data points. 

    Radial basis function (RBF) was used as a 

kernel function in this experiment. The 

advantage of choosing RBF kernel is the 
superior performance of this kernel function. 

RBF nonlinearly maps the samples and has 
limited numbers of hyper parameters thus 

reducing the complexity of model. The 
mathematical representation of the RBF kernel 

is presented by (2): 
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Figure 3: The proposed EEG signal 
classification scheme 

As it is presented in Figure 3, the collected 
data was divided into training and testing data. 

The predicting model was trained using the 
training data to predict the test data. Grid 

search and eight fold cross validation was 
applied to train data to select the optimal 

model parameters for the pattern recognition.  

By using the cross validation procedure, we 
prevented the over fitting problem. Figure 4 

illustrates the obtained optimal model 
parameters for a single participant. As it is 

presented in Figure 4, the highest cross 
validation accuracy does occur in the interval 

(0,100) for c parameter and (0,3) for 

parameter. The same interval was used for all 

the other participants.  

RESULTS AND DISCUSSION 

The selected optimal kernel parameters for 
each of the volunteers who participated in this 

study are presented in Table 1. The optimal 
kernel parameters were selected according to 

the highest value of the cross validation 

accuracy. The optimal kernel parameters were 

then used to build a model for classifying the 
arm movements of each participant. The 

obtained pattern recognition results for both 
the proposed and Emotiv classification schemes 

are presented in Table 1. This experiment, 
which was designed to compare the proposed 

and the Emotiv classification schemes, the 

average accuracies of 40.28% and 86.67% 
were respectively obtained for the Emotiv and 

the proposed classification schemes. 
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Figure 4: Cross validation accuracy based on c and  

Table 1: The selected model parameters c,  

cross validation error rate and the pattern 

recognition error rate for the proposed and 

Emotiv classification schemes 

Volunteer c, Cross 

validation 

error rate 

(%) 

  Proposed 

Classification 

error rate 

(%) 

Emotiv 
Classification 

error rate 

(%) 

A 10, 0.2, 8.33 17.54 60.55 

B 10, 0.2, 0  17.54 58.31 

C 10, 0.2, 16.67 5.26 67.17 

D 10, 0.2, 8.33 21.05 70.47 

E 10, 0.2, 4.17 5.26 42.11 

 

CONCLUSION 

This study presented a method of 

associating EEG patterns to three different right 
arm movements. The identified classes were 

grasping, elbow flexion and rest. A portable 
commercial EEG headset and multi-class SVM 

classifier were used for the pattern recognition. 
An acceptable classification error rate (less than 

14% on average) was obtained. The obtained 
result proved that successful pattern 

recognition can be performed to distinguish 

different right arm movements of users. The 
proposed method could therefore be potentially 

suitable for driving an assistive device. Future 
work will investigate the feasibility of pattern 

recognition of EEG signals in stroke patients. 
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