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INTRODUCTION 

Finite-element (FE) models of the eardrum 
have been developed to understand its 
contribution to the impedance-matching 
function of the middle ear [1]. Impedance 
matching permits the efficient transmission of 
sound from low-impedance air in the ear canal 
to high-impedance fluid in the cochlea. In 
principle, accurate FE models can also be used 
to study the effects of surgical interventions 
such as eardrum grafting. The accuracy of FE 
models of the eardrum is highly dependent on 
the elastic properties specified in the models. 
Refinements in techniques for measuring these 
properties would not only improve current 
models but would also permit quantification of 
changes in these parameters with age in order 
to correlate them with hearing performance. 
Several investigators have modeled the 
eardrum as a linearly elastic isotropic structure, 
and have measured the Young’s modulus of the 
eardrum. However, the ultrastructure of the 
eardrum suggests that it is best modeled as a 
linearly elastic orthotropic material because the 
eardrum contains two orthogonal sets of fibres. 
No attempts have been reported in the 
literature to measure the eardrum’s orthotropic 
elastic parameters in situ. In this paper we 
present a novel inverse FE technique to 
estimate these parameters. In silico 
experiments indicate that the method is robust.  

METHOD 

Indentation Technique 

Indentation testing can be used to measure 
tissue elastic parameters. This technique 

involves indenting the tissue sample and 
acquiring the corresponding force-displacement 
data [2]. Using these data, the elastic 
properties can be estimated with an inverse FE 
technique that involves optimization of a FE 
model so that predicted force-displacement 
results match measured data. This technique 
has only been applied to measure the Young’s 
modulus of the eardrum, which assumes that 
the eardrum is isotropic. In this work, to assess 
the performance of the indentation technique 
for measuring the eardrum’s orthotropic 
parameters, indentation of the pars tensa of a 
rat eardrum specimen was simulated. In this in 
silico experiment the indenter was assumed to 
be perpendicular to the surface at the contact 
point. The experiment assumes using a 
spherical-ended indenter for indentation. The 
indentation was assumed to be conducted on 
the pars tensa while the malleus was 
immobilized to isolate the eardrum from the 
ossicular and cochlear loads [2], thus 
simplifying FE modeling of the eardrum as 
described below. 

Pressurization Technique 

A pressurization test can also be employed 
to measure the elastic properties of the 
eardrum using an inverse FE technique. This 
involves pressurizing the eardrum and acquiring 
3D shape measurements. An FE model is then 
optimized so calculated pressurized shapes 
match measured ones. Similar to indentation, 
the malleus bone must be immobilized to 
isolate the eardrum from the effects of the 
ossicular and cochlear loads.  Using the 
pressurization system shown in Figure 1, the 
pressure can be generated and applied 
manually to the eardrum. In this work a 
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models are the same for both figures. As 
expected, these figures show that the 
recovered values are closer to the ground truth 
values with smaller levels of noise. The 
pressurization technique has an accuracy in 
excess of 90% when the SNR (signal-to-noise 
ratio) is 2 or greater. For the indentation 
technique, an SNR greater than 200 is required 
to achieve over 90% accuracy. The above 
estimation method is valid over a wide range of 
initialization values used with the optimization 
algorithm from half the ground truth values to 
twice the ground truth values.  

The behaviour of the remaining elastic 
orthotropic parameters (longitudinal and 
tangential Young’s moduli) was found to be 
similar with respect to SNR. 
 

 
Figure 3: Ground truth and recovered value of 

in-plane shear modulus by indentation test with 
different levels of Gaussian noise. 

 
Figure 4: Ground truth and recovered value of 
in-plane shear modulus by pressurization test 

with different levels of Gaussian noise. 

CONCLUSION 

Two techniques were developed to estimate 
the orthotropic elastic parameters of the rat 
eardrum, an indentation technique and a 
pressurization technique. The pressurization 

technique is more robust to simulated noise 
than the indentation technique, and can 
achieve an accuracy in excess of 90% for an 
SNR of 2 or greater. The indentation technique 
requires an SNR of 200 or greater for the same 
level of accuracy. Although in general the 
simplex optimization method requires 
initialization values that are not very different 
from the correct moduli values, both the 
indentation and pressurization techniques as 
described here were robust to a wide range of 
initialization values. In conclusion, promising 
results were obtained and the developed 
techniques will be used with experimental data. 
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