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INTRODUCTION 

The neural signals recorded from certain 

parts of the brain using microelectrodes at the 

single neuron level provide great amount of 

information about the dynamics of decision 

making and has been widely researched for 

development of brain machine interfaces 

(BMIs) [1-3]. 

 Conventionally, while a subject is 

performing a reach task according to some 

specific paradigm microelectrodes record the 

electrical activity of neuron(s) near the tip of 

the electrode. The recorded signal contains 

spikes and low frequency content. The spikes 

represent the firing of one or more neurons 

while low frequency content is the sum of all 

other electrical activity around the electrode.  

Analysis of neural spikes is well established 

[4]. Many methods can be used to uncover 

distinct patterns of spikes. Consider two spike 

trains: 10101010 and 11110000, recorded in 1 

s (where 1 represents the occurrence of a spike 

in a bin of length 1000/8 ms). The firing rates 

of both spike trains are identical (4 Hz), 

however the patterns are different; that is, the 

first train shows an oscillatory behavior while 

the second train resembles a step function. If 

two separate stimuli elicited these patterns, 

then the firing rate in this example is 

inadequate for characterizing the stimulus and 

does not provide any information about the 

distinct patterns that might be observed in a 

spike train. Analyses of distinct spike patterns 

have revealed underlying nonlinear and chaotic 

dynamics of firing, and would benefit from 

complementary metrics for complexity analysis 

of neural spikes. 

Lempel-Ziv (LZ) complexity can be used to 

quantify distinct patterns in symbolic 

sequences, especially binary signals [5-11]. LZ 

gives a measure of complexity based on an 

estimated number of distinct patterns obtained 

by parsing a symbolic sequence [5-9]. 

In this paper, we evaluate requirements of 

the LZ complexity for ultra-short time series 

applications similar to neural spikes.  We also 

compare two different parsing approaches and 

examine which one is more accurate for 

characterizing ultra-short time series and 

potentially neural spikes. 

METHODS AND MATERIALS 

Lempel-Ziv Complexity 

The LZ complexity in practice is limited to a 

finite number of symbols, well suited for binary 

signals.  It is also applicable to three or more 

symbols [5]. 

To determine all the distinct patterns in a 

spike train, all the characters and patterns are 

parsed and inspected for distinct patterns. 

There are different approaches for parsing a 

binary sequence [5-11]. In this work, we 

compare the original LZ algorithm [5] denoted 

as Algorithm 1, to a modified algorithm 

presented in [7] denoted as Algorithm 2. 

Algorithm 1 [5]: Let the binary signal Ps, 

be divided into substrings Ps(i,j) that start at 

position i and end at position j. That is, when i 

< j, Ps(i,j) = s(i)…s(j) and, when i > j, Ps(i,j) = 

ø, is the null set. Let V(Ps) denote the set of 

substrings in the signal Ps excluding the null set 

(e.g., if Ps = 001, then V(s) = {0, 1, 00, 01, 

001}). The parsing procedure involves a left-to-

right scan of the signal Ps. A substring Ps(i,j) is 

compared to V(Ps(1,j-1)). If Ps(i,j) is present in 

V(Ps(1, j-1)), then Ps(i,j) and  V(Ps(i,j-1)) are 

updated to Ps(i,j+1) and V(Ps(1,j)), 

respectively, and the process repeats. If the 

substring is not present, then s(j) is marked to 

indicate the end of a new component, and 

Ps(i,j) and V(Ps(1,j-1)) are updated to 

Ps(j+1,j+1) and V(Ps(1,j)), respectively. The 

process continues until j = n, where the n is the 



length of the symbolic sequence Ps. For 

example, 10101010 and 11110000 are parsed 

as 1.0.10.10.10, and 1.111.0.000 and the 

number of distinct patterns are 3 and 4 with 

V(Ps)s, {1,0,10} and {1,11,10,0,00} 

respectively. 

Algorithm 2 [7]: Let the binary signal Ps, 

be rewritten as a concatenation w1w2… of words 

wk in a way that w1 = s1 and wk+1 is the 

shortest word that has not appeared before; 

that is, wk+1 is the extension of some word wj in 

the list, wk+1 = wjs, where 0 ≤ j ≤ k, and s is 

either 0 or 1. For example, 10101010 and 

11110000 are parsed as 1.0.10.10.10, and 

1.11.10.00.0 and the number of distinct 

patterns are 3 and 5. 

Now let c(n) denote the number of distinct 

patterns after parsing of the signal Ps. The LZ 

measure is defined as 
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which is an estimate of the total number of 

samples based on the total number of distinct 

patterns. Clearly the LZn estimate obtained by 

Eq. 3, is affected by the number of samples, n; 

this is has been mathematically proven by Hu 

et al., [7].  

Normalized Lempel-Ziv Complexity 

Following the method of Hu et al., [6], we 

propose a normalized LZN measure with the 

form 
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where LZC, and LZR are the LZ measure of 

constant (all 1s or 0s) and random (binary 

white noise) sequences respectively with the 

same number of samples, n. The LZN is 

mathematically independent of the number of 

samples [7]. 

Data 

Following Gao et al., [8], we generated 

ultra-short time series with different 

complexities using the Logistic equation in this 

form 
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where X0 = 0.307, and α is 2, 3.3, and 3.7, for 

stable, periodic, and chaotic time series 

respectively [7]. Five sets with 10, 50, 100, 

150, and 200 samples were generated for 

stable, periodic and chaotic time series 

resulting in total fifteen sets of data. 

RESULTS 

Table 1, 2, and 3, summarize the LZ 

measure of stable, periodic, and chaotic time 

series parsed with the Algorithms 1 and 2, and 

computed using original and normalized 

versions. The OA1 and NA1 denote the 

measures obtained using the original and the 

normalized LZ definitions (Eq.3 and Eq.4), 

respectively parsed using the Algorithm 1. The 

OA2 and NA2 denote the measures computed 

using the original and the normalized LZ 

definitions, respectively parsed using the 

Algorithm 2. 

The LZ measures that are not in the interval 

[0,1] are not valid [4].  These invalid values 

arise from an insufficient number of samples. 

Table 1: Results for stable time series.  

 10 50 100 150 200 

OA1 1.4 1.3 0.4 0.3 0.2 

OA2 1.0 0.5 0.3 0.2 0.2 

NA1 1.1 1.1 0.2 0.2 0.2 

NA2 1.0 0.2 0.2 0.2 0.2 

 

Table 2: Results for periodic time series. 

 10 50 100 150 200 

OA1 1.6 1.4 0.6 0.4 0.4 

OA2 1.0 0.6 0.5 0.4 0.3 

NA1 1.3 1.1 0.4 0.3 0.3 

NA2 1.0 0.3 0.3 0.3 0.3 

 

Table 3: Results for chaotic time series. 

 10 50 100 150 200 

OA1 1.8 1.6 0.9 0.7 0.6 

OA2 1.0 0.9 0.8 0.6 0.6 

NA1 1.6 1.3 0.6 0.6 0.6 

NA2 1.0 0.6 0.6 0.6 0.6 

 

DISCUSSIONS AND CONCLUSIONS 

The results show that the LZ measure is 

increased for the chaotic time series compared 

to the stable and periodic time series. This is 

consistent with greater irregularity and 

complexity within the chaotic time series 



compared to the stable and periodic time 

series. 

The results show that the Algorithm 1 

requires more samples compared to the 

Algorithm 2 when chaotic time series are 

being analyzed, otherwise, the results of 

Algorithm 1 are not valid, as seen in the case 

of 10 and 50 samples. This effect is not as 

severe when analyzing stable and periodic time 

series. However, with 10 samples it is difficult 

to characterize the underlying dynamics of each 

time series. 

The effects of the number of samples on the 

measure computed using the original LZ (Eq.3) 

reinforce the necessity to use the normalized 

version when a number of time series are being 

compared which do not have equal number of 

samples. 

To increase the information transfer rate, it 

is advantageous to extract information from a 

minimum number of spikes. The number of 

spikes in a sample also varies within different 

trials.  This suggests that the combination of 

the normalized LZ measure (Eq.4) along with 

the Algorithm 2 is better suited for the 

analysis of neural spikes compared to the 

original LZ (Eq.3) and Algorithm 1. 

Finally, the results show that the LZ 

measure could be used as a complementary 

measure along with firing rate for the analysis 

of ultra-short neural spikes. 
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