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ABSTRACT 

A Wearable Mobility Monitoring System 

(WMMS) could be a valuable device for 

rehabilitation decision-making. This paper 

presents preliminary research on a proof-of-

concept system that uses the BlackBerry 9550 

as a self-contained WMMS platform. Integrated 

triaxial accelerometer, GPS, and timing data 

were processed to identify mobility changes-of-

state between standing, walking, sitting, lying, 

stairs, ramps, riding an elevator, and car riding. 

This pilot project provides insight into new 

algorithms and features that can be used to 

recognize changes-of-state in real-time. 

Following feature extraction from the sensor 

data, a decision tree was used to distinguish 

the change-of-state. In the complete system, 

real-time change-of-state identification will 

trigger video capture for improved mobility 

context analysis. Five trials were collected from 

one subject while he completed a continuous 

circuit that incorporated all target mobility 

tasks. Average sensitivity was 100.00 % and 

specificity was 86.73 % for walking on level 

ground and ramps. Sensitivity was 100.00 % 

and specificity was 98.86 % for stair 

navigation. These results support continued 

evaluation of the new WMMS for mobility 

monitoring.  

INTRODUCTION 

BlackBerry Smartphones could provide an 

ideal platform for ubiquitous assessment of how 

people with disabilities move outside the 

healthcare clinic. We have previously shown 

that synchronized sensors in a “Smart-holster”, 

combined with Smartphone GPS and camera 

images, can be used in a WMMS [1]. New 

BlackBerry devices that integrate 

accelerometers and video capture provide an 

opportunity for mobility assessment using only 

integrated sensors.  

Other researchers have developed wearable 

video systems with sensors, such as GPS, ECG 

and accelerometers, to record information on 
location, movement, and context [2], [3], [4]. 

Our project evaluated the BlackBerry Storm2 

9550 as a WMMS. Previous preliminary work 

confirmed accelerometer capabilities, video 

capture capabilities, and potential activity / 

change-of-state identification algorithms for 

moving, standing, sitting, and lying down [1].  

In this study, video was captured while 

changes-of-state were identified. Change-of-

state is the act of changing necessary 

characteristics from one physical activity 

behavior to another. Combining activity 

change-of-state and video information, the 

mobility context can be identified. This 

contextual information, combined with 

improved activity classification, will lead to 

better rehabilitation decision-making.  

METHODS 

System Architecture 

A data logging application was developed 

using Eclipse 3.5, BlackBerry Java SDK 5.0, and 

BlackBerry OS 5.0. Acceleration, GPS location, 

and video were collected at the phone’s 

maximum sampling frequency. During 

multimedia capture, acceleration sampling 

frequency is 8 Hz. 

Using the Blackberry 9550-Storm2, all data 

were simultaneously collected with the phone 

positioned in a passive holster (Figure 1).  

Following data transfer to a computer, 

MATLAB was used to extract features from the 

3-axis accelerometer data and a decision tree 

was used to identity changes-of-state (Figure 

2). Excel was used for all statistical analyses. 



 

Figure 1: Smartphone and sensor orientation, 

placed on the right side of front pelvis.  

 

 

Figure 2: WMMS algorithm.  

 

Features Calculations 

From the 3-axis accelerometer data, certain 

features were calculated that were sensitive to 

changes in mobility status.  

The standard deviation of the Y acceleration 

(STD Y) is used to define static or dynamic 

movement states. In Equation 1,  
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 is STD Y,  is the Y-acceleration value, m is 

the mean Y-acceleration, and N is the data 

window size.  

The Y-accelerometer range (Range Y) is 

defined in Equation 2 and used for stair and 

ramp identification. When possible, range is 

used instead of standard deviation to reduce 

computational load and improve real-time 
capabilities. 

 
are the maximum and 

minimum values within the data window. 

                     (2) 

Sum of range (SR) distinguishes between 

walking, going upstairs, and going downstairs. 

From Equation 3, Range X, Y, and Z are the 

range values from the three acceleration axes. 

                (3) 

Signal Magnitude Area of SR (SMA-of-SR) is 

the sum of all SR values within the data window 

(Equation 4). Since the time interval is a 

constant, this becomes an efficient estimation 

of the SR integral.  

               (4) 

DiffSR is the difference in SR values 

between the current (SR2) and previous (SR1) 

windows. DiffSR helps to recognize mobility 

changes over time (Equation 5).  

                                  (5) 

Rxz has a similar task, identifying mobility 

changes, but acts within the data window 

(Equation 6). 

                                         (6) 

Where Rx is the range X, and Rz is the range Z. 
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SGPSspeed is the sum of the GPS speeds 

within a 20 second data window (Equation 7). 

The larger data window is used to decrease 

false positives when a car stops at a stop sign 

or traffic light. 

                         (7) 

Change-of-state  / Classification 

The decision tree (Figure 3) uses pre-set 

thresholds for feature analysis. The ten 

previously defined features are combined to 

recognize static, dynamic, riding an elevator, 

walking, stairs, ramps, and car riding states. 

Double thresholds are required to reduce false-

positives when transitioning between states. To 

identify a change-of-state, classification values 

are summed and compared with summation 

results from the previous three data windows. 

Visual video clip assessment improves activity 

classification accuracy. Three second video clips 

are adequate to recognize the activity and 

context.  

 

Figure 3: State determination algorithm with 

change of state judgment. “P” = previous 

output number. 

Test Procedure 

One able-bodied subject performed a series 

of movements continuously: sitting, standing, 

lying, and walking, climbing stairs, walking on 

ramps, riding an elevator, and start/end car 

ride. Five trials were captured for each activity. 

Each set of activities were performed with 

accelerometer and video recording. Each 

activity took approximately 10 seconds to 

complete.  

The Storm2 9550 accelerometer sampling rate, 

with BlackBerry video control running, averaged 

8.25 Hz (STD=0.49) [5]. Accelerometer 

sampling stops during video recording. 

Therefore, a continuous cycle of three seconds 

of video capture followed by ten seconds 

without video was used for this study. In 

practice, video will only be captured after a 

change-of-state. 

RESULTS 

The SR curve has a similar shape as the 

STD Y curve, but the SR values are several 

times larger than the STD Y values. This 

difference enhances the activity classification in 

Figure 4. Further, STD Y produces more false 

negatives than SR. “St” means standing, and 

“W” means walking. 
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Figure 4: Comparison of STD Y and SR. 

The comparison of SMA and SMA-of-SR is 

shown in Figure 5. SMA-of-SR can identify more 

spikes than SMA, which was one of features in 

the previous WMMS [1]. From 129 to 171 

seconds, SMA-of-SR can recognize walking for a 

short period, but the SMA cannot, as seen in 

Figure 5. Further, comparison of Figure 4 and 

Figure 5 in SMA-of-SR and SR, the SMA curve is 

smoother than the SR curve. 
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The results of activity classification when 

using the accelerometer features and video 

clips are shown in Table 1. Walking produced 

more false positives than other activities.  

Table 1: Accelerometer and video results.  

Se = sensitivity, Sp = specificity, TP = true 

positive, FN = false negative, FP = false 

positive, TN = true negative. 

Change of 
State 

TP FN FP TN 
Se 
% 

Sp % 

Stand-to-sit 18 0 0  100 100 

Sit-to-stand  20 0 0  100 100 

Stand-to-lie 15 0 0  100 100 

lie-to-stand  15 0 0  100 100 

Walk-to-stand 69 0 0  100 100 

Taking 
elevator 

6 0 1 36 100 97 

Walking on 
level ground 

112 0 26 162 100 86 

Going ramps 22 0 1 15 100 94 

Going upstairs 25 0 0  100 100 

Going 
downstairs 

25 0 1 18 100 95 

Start of car 
ride  

5 0 1 76 100 99 

End of car ride 5 0 1 76 100 99 

CONCLUSION 

The 3-axis accelerometer, GPS, and video in 

the Blackberry 9550 provided important tools 

for wearable mobility monitoring. A challenge 

for WMM implementation will be the relatively 

low accelerometer sampling rate with 

BlackBerry OS 5. At less than 10 Hz, fewer 

accelerometer signal processing options are 

possible. In addition, the loss of accelerometer 

data during video recording limits the practical 

video clip duration.  

By combining and weighting the range, 

sum, and covariance statistics, good activity 

classification was possible for standing, sitting, 

and lying. Sensitivity and specificity outcomes 

were high for all activities except walking 

specificity (86%). Higher accelerometer 

sampling frequencies (above 20Hz, and ideally 

50 Hz) could help to reduce walking false 

positives and help to classify walking –related 

activities correctly (level ground, inclines, 

stairs, etc.). Further research on methods to 

set appropriate thresholds for the individual 

could also help to decrease false positives. 

This study demonstrated the potential of the 

BlackBerry integrated sensor and multimedia 

approach for a WMMS. However, additional 

research is required to increase the 

accelerometer sampling rate on the 

Smartphone and/or to add additional sensors 

for activity state identification.  
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