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INTRODUCTION 

Ligaments exhibit time and history 
dependent mechanical behaviours such as 
stress relaxation. The most commonly used 
model to describe these viscoelastic properties 
is Fung’s quasilinear viscoelastic theory1. 
Although useful, this model does not account 
for the strain dependent rate behaviour of 
stress relaxation proven by Provenzano2 
(2001). This property has been better modelled 
in several studies with general nonlinear 
models3,4,5,6,7. Provenzano et. al (2002)5 had 
particular success by applying the Schapery 
method8 and the modified superposition 
method (MSM) (Findley 1976)9 constitutive 
models to rat medial collateral ligaments (MCL) 
stress relaxation data. To the author’s 
knowledge only one other study has attempted 
to model stress relaxation of a human MCL4 and 
this study will attempt to apply Schapery 
method and MSM to human MCL data from 
Bonifasi Lista’s 2005 study10. 

MATERIALS AND METHODS 

Stress relaxation data of a longitudinally 
loaded human MCL was extrapolated from 
Bonifasi-Lista (2005) where the experimental 
methods are thoroughly described. In 
summary, the experiment consisted of 
incremental stress-relaxation tests where the 
specimen was stretched to first equilibrium 
strain level (1.6%) at 1%/s, allowed to stress 
relax, and then subjected to sinusoidal 
oscillations for a separate study. The protocol 
was then repeated for two other strain levels 
(2.4% and 3.2%). The stress relaxation data of 
this study is illustrated in figure 1. 

 
Figure 1: Stress relaxation data extracted from 

Bonifasi Lista (2005)10. 

 

This data was used to derive the 
parameters for the two following models: 

Schapery Method 

 Schapery’s nonlinear viscoelastic theory 
is described in detail in Schapery 19698 and is 
derived from irreversible thermodynamic 
principles. In a one-dimensional case (uni-axial 
loading) the integral expression is: 

σ (ε, t) = he(ε)Eeε + h1(ε) ΔE(ρ(t)− ρ '(τ )) dh2 (ε)ε
dτ

dτ
0

t

∫ (eq1)  

with ρ, the reduced time, defined as: 

ρ =
dt '

ae[ε(t ')]0

t

∫ (eq2)  

where he, h1, h2, and ae are strain dependent 
material properties that vary due to strain 
effects in the Helmholtz free energy equation. 
For this application ae and h1 are set to unity8. 
Ee is the final elastic modulus in the 
experimental time frame and ΔE is the 
transient modulus that can be modelled as a 
power law: 

ΔE(ρ) =Cρ−n eq(3)  
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Substituting a Heaviside function of ε0 into eq1 
as the strain history results in: 

σ (ε, t) = he(ε)Eeε0 + h2Cε0t
n eq(4)  

Where Ee and ε can be found with experimental 
data and he and h1 can be found either with 
experimental data or by curve fitting. 

Modified Superposition Method (MSM): 

 MSM best described in Findley (1976)9 
takes the form of a non-separable strain-
dependent power law: 

E(ε, t) = A(ε)ε0t
B(ε ) eq(5)  

where A(ε) represents the initial elastic 
modulus as a function of strain found with 
experimental stress-strain data and B(ε) is the 
strain-dependent rate of stress relaxation and 
can be determined by curve fitting stress 
relaxation rate-strain data. 

PARAMETER ESTIMATION AND RESULTS 

Schapery Method 

Ee was found to be 1540.8 kPa by 
calculating the tangent modulus of the stress-
strain data at t=1000s. C and n were 
determined by two ways. In Provenzano 20025, 
the authors determined C and n by setting he 
and h2 to unity and curve fitting the 1.6% 
strain stress relaxation data with eq(4). This 
resulted in a C = -1138.3 and an n = 
0.001181. Although this makes mathematical 
sense, these values should represent the 
transient modulus (recall eq(3)) which is more 
accurately modelled with a decaying power law. 
Thus, the transient modulus was found by 
calculating the tangent modulus of stress-strain 
data at each time point, and by fitting this 
modulus-time data with a power curve to 
obtain C = 1919.7 and n =  -0.024. By then 
setting C and n to these values and fitting 
eq(4) to the stress relaxation data we can find 
the values of he and h2 of each strain. The 
functions he(ε) and h2(ε) were found by then 
fitting the h-strain curve with a logarithmic and 
exponential curve respectively (curves of 
highest R2 value) as illustrated in Figure 2. 

Figure 2: he and h2 as a function of strain. 

Adding the final and tangential stresses 
completes the model as follows 

σ (ε, t) = [0.2364 ln(ε)− 0.342]Eeε

+[0.2349e0.3223ε ]1919.7t−0.024 eq(6)
 

The model is plotted with experimental data 
in Figure 3. The R2 values for the 1.6, 2.4 and 
3.2% strain cases were 0.911, 0.862 and 0.859 
respectively. 

 
Figure 3: Experimental data with Schapery 

method model. 

Modified Superposition Method 

B(ε) was found by fitting a polynomial 
curve to the stress relaxation rates – strain 
data. The stress relaxation rate is defined as 
the slope on the log-log stress-time graph and 
was found to be -0.0496, -0.0312 and -0.0281 
for 1.6, 2.4 and 3.2 % strain respectively. This 
resulted in: 

B(ε) = −0.012ε 2 + 0.0709ε − 0.1325 eq(7)  
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A(ε) was found by calculating the initial young’s 
modulus (t=0.001s) at each strain and by 
fitting a linear curve (best fit at R2 = 0.99997). 
The initial young’s moduli for 1.6, 2.4 and 3.2 
% strain were 389.38kPa, 776.16kPa and 
1155.6kPa respectively. A(ε) was thus found to 
be: 

A(ε) = 478.89ε −375.62 eq(8)  

Thus: 

σ (t,ε) = [478.9ε −375.62]ε × t−0.012ε
2+0.0709ε−0.1325 eq(9)  

The model is plotted with experimental data in 
Figure 4. The R2 values are 0.881, 0.855 and 
0.849 for 1.6, 2.4 and 3.2 % strain 
respectively. 

 
Figure 4: Experimental data with MSM model. 

DISCUSSION AND CONCLUSION 

Both models were able to successfully 
describe ligament stress relaxation, which is 
useful in making predictions on intermediate 
ligament behaviour and implementation in finite 
element analysis. Information on ligament 
parameters is also evident by these models. 
The Schapery model’s C and n indicate how the 
elastic modulus changes over time 
Furthermore, the fact that h2(ε) approaches 
zero suggests that relaxation rate reduces with 
increased strain with diminishing returns. MSM 
illustrates rate dependence on strain through 
B(ε) and clearly highlights the initial moduli. 
Overall, MSM is advantageous in that the 
stress-relaxation behaviour is modelled with a 
single term, whereas the Schapery model fits 
the experimental data more closely as shown 
by the lower R2 value. 
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