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Abstract 

Anthropometric characteristics, such as 

gender, body mass index (BMI), age, etc. are 

considered as risk factors for obstructive sleep 

apnea (OSA). These information are used for 

screening OSA during wakefulness, but they 

provide a poor specificity compared to our 

screening method using tracheal breathing 

sound analysis. Despite that, one of the main 

challenges of using breathing sounds analysis 

for classification of OSA during wakefulness is 

the effect of confounding variables. Breathing 

sounds are not only affected by OSA, but also 

by the anthropometric factors. In this work, we 

investigated which sound features show the 

least correlation to anthropometric factors. 

Tracheal breathing sounds of 114 individuals 

(66 subjects with apnea/hypopnea index 

(AHI)<15 and 48 with AHI>15) were recorded 

during wakefulness in supine position. Spectra 

and bi-spectra of the signals of the two AHI 

groups were analyzed to extract the most 

significant features. Our results suggest it is 

possible to find the best features with high 

sensitivity to AHI and least sensitivity to 

confounding variables. 

 

Introduction 

 

Obstructive sleep apnea (OSA) disorder 

is a common syndrome characterized by 

repetitive episodes of complete (apnea) or 

partial (hypopnea) pharyngeal collapse during 

sleep [1]. It can cause a severe effect on the 

quality of life of the affected people. OSA has 

various consequences including increasing the 

risk of developing heart disease, hypertension, 

stroke, depression, diabetes, and headaches, as 

well as traffic accidents (due to daytime 

sleepiness) [2]. Furthermore, OSA may lead to 

a preoperative morbidity and/or an after-

surgery mortality [3]. Thus, diagnosing a 

subject with OSA, prior to conducting a surgery 

requiring a full anesthesia, would reduce the 

mentioned risks [3].  

Sleep apnea severity is measured by 

apnea/hypopnea events index (AHI) per hour. 

The gold standard for OSA diagnosis is 

Polysomnography (PSG). However, the 

availability of equipment, sleeping rooms, and 

skilled sleep technicians pose some challenges. 

As a result, PSG assessment has usually a long 

waiting list [4].  

The long waiting list associated with PSG 

obstructs patients from conducting an objective 

OSA diagnosis quickly, which is crucial to know 

for patients prior to a major surgery. Therefore, 

physicians use one of the available subjective 

OSA diagnosis/screening tools such as STOP-

BANG questionnaire [5].  

Subjective tools, such as questionnaires, 

are easy to implement, fast, and inexpensive, 

but they have a very poor specificity (~10%) 

[5]. Consequently, they are not the most 

reliable and prompt choice. Accordingly, the 

need for a better solution to diagnose and 

screen subjects for OSA has massively 

increased. Such a solution will help in reducing 

the PSG waiting list and decreasing the possible 

harm consequences from conducting an 

operation. 

Several research groups around the 

globe are working on finding objective 

alternative tests using sound analysis to screen 

for OSA during wakefulness [6]-[9]. In our 

previous work, we showed that tracheal 

breathing sounds analysis could be used for 

screening OSA during wakefulness. It showed a 

high testing classification accuracy of 84% with 

a comparable specificity and sensitivity 

between non-OSA (AHI≤5) and OSA (AHI≥10) 

groups [10].  

While our previous work [10] has shown 

a significant superiority of using tracheal 

breathing sound features during wakefulness 

over the use of the anthropometric information 

for screening OSA, the effect of anthropometric 
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parameters on the breathing sound features 

was not investigated. Anthropometric 

characteristics, such as gender, body mass 

index (BMI) and age are risk factors for 

developing OSA [11]. They have shown their 

impact on the morphology of the upper airway 

structure [12], [13]. Thus, it is expected that 

anthropometric parameters have an impact on 

the tracheal breathing sounds. 

In this work, our main objective was to 

investigate which sound features show the 

highest receiver operating characteristics 

(ROC), high testing classification accuracy, high 

correlation to AHI on supine position, and the 

least dependence on anthropometric 

parameters. 

 

Methodology 

 

Data 

Using a microphone placed over the 

suprasternal notch of the trachea, we recorded 

5 full deep breathing cycles through nose with 

mouth closed, followed by 5 deep breaths 

through mouth while wearing a nose clip for 

each subject. Data of this study were adopted 

from previous study [10], in which breathing 

sounds of 186 individuals were recorded during 

wakefulness in supine position. 

Since wakefulness data were recorded in 

supine position, in this study, we excluded data 

of subjects who had not an AHI in supine 

position. Thus, data of 114 subjects were 

selected for the analysis. The signals of the 

dataset were divided into two groups: a non-

OSA group (n=66, AHI<15) and an OSA group 

(n=48, AHI>15). The anthropometric 

parameters of the analyzed subjects are 

presented in Table 1. 

 

Signal analysis and feature extraction 

From each breathing sounds, we 

estimated the power spectrum density (PSD) 

using the Welch method [14], the bispectrum 

using the indirect class of conventional 

bispectrum estimator [15], Katz and Higuchi 

fractal dimensions [16], [17], and Hurst 

exponent. Our interested frequency band for 

tracheal sounds was 100–2500 Hz [18]. 

Several features (i.e., mean, standard 

deviation, spectral entropy, skewness and 

kurtosis, spectral centroid, etc.) were extracted 

from the non-overlapping area between the 

average spectra/bispectra and their 95% 

confidence intervals. The rest of the features 

were evaluated by analyzing Katz and Higuchi 

fractal dimensions and Hurst exponent. 

 

Feature reduction 

For each extracted feature, p-value, 

using unpaired t-test, and area under the curve 

of ROC between the two groups were 

computed. Out of the initially extracted 412 

features, 89 features were selected for further 

analyses based on the following criterion: 1) p-

value between the two groups for the feature is 

≤ 0.05, 2) any two features with an in-between 

correlation coefficient 0.95> r >0.8 and p-value 

>0.05, the feature with the lower area under 

ROC curve was rejected, and 3) any two 

features with an in-between correlation 

coefficient ≥0.95, the feature with the lower 

area under ROC curve was rejected. 

Then, the selected 89 features went 

through a restricted reduction procedure to find 

the set of features characterized by the highest 

areas under ROC curves. In this process, the 

first 10 features with the highest area under 

ROC curve were selected for next stage of 

analysis.  The p-value between the two groups 

for these 10 features was evaluated using t-

test, in addition, the correlation between each 

feature and AHISupine was computed. 

Furthermore, using SVM classifier with a linear 

kernel, testing classification accuracy using 

leave-one-out technique was calculated for 

each feature. 

 

Features and Anthropometric parameters 

For each feature of the selected 10 

features, the area under ROC curve, the p-

value between the two groups, the correlation 

with AHISupine, and the testing accuracy were 

evaluated for different subsets of the data 

based on anthropometric parameters, one at a 

time. For example, they were evaluated for two 

groups of male vs female, BMI≤30 vs BMI>30, 

etc. 

Among the different subsets, the coefficient of 

variation (CV) of the area under ROC curves 

and the testing accuracies was computed for 

each feature, separately. Furthermore, features 

with a CV≤0.08 and a variation less than 0.2 

were selected as the least dependent (to the 

anthropometric) parameters. 
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Table 1: Study subjects’ anthropometric parameters. NC is nick circumference, and MS is 

mallampati score 
 AHISupine Age Gender BMI NC Height Weight MS 

Non-OSA 
(AHI<15, 

n=66) 

3.92 ± 
4.5 

47.23 ± 
12.86 

28 M, 38 
F 

30.29 ± 
6.55 

38.52 ± 
3.77 

167.35 ± 
10.6 

84.62 ± 
19.58 

34 ’I’, 16 
‘II’, 9 ‘III’ 
and 7 ‘IV’ 

OSA (AHI>15, 
n=48) 

57.133 ± 
34.27 

49.64 ± 
12.7 

40 M, 8 
F 

34.29 ± 
7.45 

44.11 ± 
3.48 

170.45 ± 
10.45 

100.15 ± 
21.22 

17 ’I’, 16 
‘II’, 9 ‘III’ 
and 6 ‘IV’ 

 

Results 

 

Anthropometric parameters’ statistics of 

the two groups are reported in Table 1. Table 2 

shows the details of the feature reduction 

results on the best 10 features. 

 

Table 2: Results of the selected 10 features in a 

descending order based on the area under ROC 

curve; using the total dataset 

 
Feat
-ure 
num
-ber 

Subj
-ects 
with 
AHI
<15 

Subj
-ects 
with 
AHI
>15 

RO
C 

cur-
ve 

P 
value 

Corre
-latin 
coeffi
cient 

Testing 
accurac

-y 

1 58 39 0.83 4E-08 -0.62 0.79 

2 58 39 0.82 0.0004 -0.34 0.62 

3 64 46 0.86 0.0072 0.21 0.76 

4 64 46 0.80 3E-08 0.50 0.73 

5 58 39 0.79 1E-06 -0.55 0.77 

6 59 40 0.77 1E-05 -0.55 0.68 

7 59 40 0.76 1E-05 -0.47 0.72 

8 64 46 0.76 4E-05 0.45 0.72 

9 63 45 0.76 6E-07 0.53 0.76 

10 63 47 0.75 6E-07 0.54 0.67 

 

Figures 1 shows the area under ROC 

curve of each single feature for different 

subsets that divided of the confounding 

variables. Figure 2 shows the CVs for the area 

under ROC curve, the testing accuracy and the 

average value of for each feature. Figure 3 

shows the CV of the two measures for each 

feature. As can be seen from these figures, 

features 1, 4 and 9 show a low CV (≤0.08) and 

variation (<0.2) values. These features are 

defined below: 

 

 
 
 
 
 

where, InsM is mouth inspiration breathing 

phase; Amean is arithmetic mean. 
 

 
Figure 1: Area under ROC curve using the 

selected 10 features within different subsets 

based on the anthropometric parameters 

 

 
Figure 2: Coefficient of variation of the area 

under ROC curve and testing accuracy of the 10 

features among different anthropometric 

parameters 

 

Feature9 = Fundamental frequency 
estimation using zero-crossing technique with 
a cut off frequency of 1600 Hz for InsM 



The 40th Conference of The Canadian Medical and Biological Engineering/La Societe Canadiénné de Génie Biomédical 

Figure 3: Coefficient of variation between the 

CV of the area under ROC curve and the CV of 

testing accuracy of the 10 features 

 

Discussion 

 

The results of this study show that the 

anthropometric parameters affect the breathing 

sound features. However, it is possible to find 

the sound features with the least effect of 

confounding variables using the proposed 

methodology based on ROC and variation 

measures.  

ROC value provides an explicit intuition 

about the specificity and sensitivity of a 

classification system. Thus, the selected 

features were ranked based on their areas 

under ROC curve. The 10 features giving the 

highest values were selected for further 

analysis. The number 10 was arbitrary selected 

to reduce computational cost of analysis.  

Interestingly, the selected 10 features 

were all extracted from signals recorded 

through mouth breathing during inspiration 

phase. Although using a different analysis, this 

result is congruent with those of our previous 

study [10]. Three features (1, 4 and 9 on Fig. 

2) showed the least dependence on the 

confounding variables.  

Overall, this study has shown that 

anthropometric parameters have an effect on 

the sound features, but it is possible to find 

sound features that are least affected. The least 

dependent features on the confounding 

variables are probably better representatives of 

the OSA severity.  However, having a 

reasonably large balanced groups of subjects 

for each subgroup between the two OSA groups 

is a serious limitation in our study that need to 

be addressed and resolved in future studies. 
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