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INTRODUCTION 

Current breast cancer screening, using X-
ray mammography has various drawbacks. 
These include the use of ionizing radiation, the 
need for breast compression, high cost and the 
difficulty in implementing this technology in 
rural communities. Some studies have shown a 
reduction in mortality associated with x-ray 
mammography breast cancer screening [1, 2]. 
However, more recent papers have challenged 
these findings and have argued that the 
benefits associated with mammography are 
inconclusive [3, 4].  

The reported incidence of breast cancer is 
higher in the developed nations. However, 
people in emerging economies have lower 
survival rates. For instance, the five-year 
survival rate for breast cancer is less than 50% 
in Gambia, Uganda, and Algeria, while it is 
nearly 90% in the United States [5]. In 
Manitoba, Canada, women from rural areas 
have a cancer incidence-to-mortality rate of 
60%, while their urban counterparts have a 
rate of 37% [6]. 

The research presented in this paper is part 
of an ongoing project that aims to improve the 
availability of breast cancer screening by 
providing a portable device that is suited to the 
needs of low and middle-income countries and 
rural communities. The feasibility of a portable 
breast microwave sensing (BMS) system is 
being evaluated. This portable and inexpensive 
system, which does not require highly trained 
operators, is being developed to bring breast 
cancer screening to remote communities that 
might not otherwise have access [7]. 

 

EXPERIMENTAL SYSTEM 

The proposed system classifies the 
microwave responses from a patient’s breast 
into one of two classes, those containing 
tumours and those without. The classification 
algorithm consists of these steps: 

1. The patient places her breast between a 
transmitting antenna and an array of 
receiving sensors. 

2. The transmitting antenna sends a 
microwave pulse towards the breast while 
the scattered signals are captured by the 
sensors and logged into the on-board 
computer. 

3. The servo-motor rotates the chamber that 
holds the transmitting antenna and 
sensors. 

4. Steps 2 and 3 are repeated until the 
scattered signals have been acquired at 
five different rotation angles. 

5. An array containing the values of all 
scattered signals from all different angles 
is given as an input to a classifier that 
was previously trained. The classifier 
indicates if a tumour is present. 

To test the feasibility of the proposed 
experimental system, Richmond’s frequency-
domain simulation was performed [8], and the 
results were fed into different classifiers for 
evaluation. The datasets were generated using 
an algorithm that simulates the scattering of 
the electric field given a 2D cross-sectional 
model of an arbitrarily shaped scatterer [8]. In 
our case, the scatterer consists of the breast 
tissues and the system’s chamber. 

The simulations were performed using 
random variables for breast diameter, tumour 



The 40th Conference of The Canadian Medical and Biological Engineering/La Societe Canadiénné de Génie Biomédical 

sizes, fibro-glandular densities, and breast 
misalignment with respect to the chamber’s 
center of rotation. 

TISSUES AND PROPERTIES 

In the absence of tissues, the sensors would 
only detect the electrical field produced by the 
transmitting antenna and scattered by the PVC 
walls of the chamber. As tissue is introduced 
into the experiment, the electrical field is 
perturbed and the values logged by the sensors 
are affected. 

The degree to which electrical field 
scattering occurs is determined by the relative 
permittivity of the introduced material. The 
relative permittivity of the phantom material is 
a function of frequency, moisture, temperature 
and pressure [9]. However, if the measurement 
is carried out at constant values of moisture, 
temperature, and pressure, the accepted 
method for modeling a material’s relative 
permittivity is by fitting known values of the 
Cole-Cole model into a single equation [10], 
which has the following form [11]:  

 

(1) 

BREAST MODELS AND DATASETS 

The dataset used in this paper is composed 
of 871 randomly generated breast models. To 
simulate the chamber's rotational capabilities, 
each model was rotated in increments of 12° 
for a total of five breast orientations. 

Each breast model was subjected to five 
frequencies (2.3 GHz, 3.35 GHz, 4.4 GHz, 5.45 
GHz, and 6.5 GHz) and the scattered field 
values were captured at 12 sensor locations, 
resulting in 60 values per breast orientation. 

The dataset was classified using three 
different modalities: 

• Mode 1 assumes every breast orientation 
is a separate experiment, resulting in 
4355 samples of 60 features. 

• Mode 2 selects only the first orientation 
and disregards the rest, resulting in 871 
samples of 60 features 

• Mode 3 takes all five positions as a single 
experiment, for a total of 871 samples of 
300 features. 

SCATTERING SIMULATION 

The method used to simulate the scattering 
phenomena of the electric field with the 
different materials is an implementation of the 
algorithm described in Richmond's classic paper 
[8]. This algorithm uses a single frequency and 
different permittivity values on a 2D grid. The 
total field at any point is found by solving a 
system of algebraic equations. The field 
intensity at each of the sensor locations is 
taken from these results. While this is an 
idealised situation, it is a reasonable 
approximation to the measurements that are 
obtained by using solid-state sensors that are 
similar in size to the spatial resolution of the 
simulation. This algorithm generates results 
that compare well with the exact solution [8]. 

Five frequencies were used in these 
simulations. Since the permittivity of the 
materials change as a function of frequency, 
this algorithm was run once for each frequency. 
A grid size of 2 mm was chosen as a balance 
between processing time and spatial resolution. 

CLASSIFICATION 

SVMs, as well as other machine learning 
techniques, have been successfully used to 
classify electromagnetic signals scattered from 
breast tissue [16]. A total of three classifiers 
were chosen for this paper: A K-Nearest 
Neighbour, a Support Vector Machine, and a 
Neural Network. 

The pre-processing algorithm for each 
classifier was as follows. 

• A cross-validation train-test split of 80%-
20% was carried out. 

• A Principal Component Analysis (PCA) was 
used to weight the features, according to 
the apparent correlation between each 
feature and the true class of the sample. 
No feature reduction was carried out. 

• A Grid-search algorithm found the best-
performing values for the different 
classifier’s parameters. A simultaneous 5-
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fold cross-validation on the training data 
was carried out. 

• The remaining 20% of the data that 
represent the test set were used by the 
classifier to obtain its predictive power. 

The scores of a classifier vary with each 
run, and an average score was obtained by 
running the algorithms 20 times with each 
dataset’s mode. The machine learning module 
for Python "sklearn 0.16.1" was used to 
perform the classification. This software 
package includes the code necessary to 
implement and train the different classifiers 
[17, 18]. 

The classification metrics used to compare 
each algorithm were the following: 

 

(2) 

 

(3) 

 

(4) 

Where DA stands for Diagnostic Accuracy, 
tpr is the True positive rate, tnr the true 
negative rate, tp the true positive fraction, tn 
the true negative fraction, fp the false positive 
fraction, and fn the false negative fraction. 

The Receiver Operating Characteristic (ROC) 
shows a classifier’s performance by comparing 
the sensitivity and the false positive rate. The 
Area under the Curve (AUC) of the ROC was 
chosen as a metric to evaluate a classifier’s 
overall performance. 

RESULTS 

Three machine learning algorithms were 
used to classify the simulated experiments:  K-
Nearest Neighbors, Support Vector Machine 
with a Radial Basis Function Kernel, and a 
Neural Network. 

The following tables show the average 
performance metrics obtained by each classifier 
on the three different dataset modes. 

 

Table 1: Performance metrics: KNN 

Dataset 

mode 

Diag. 

Accuracy 

Sensitivity Specificity ROC 

AUC 

1 74% 60% 86% 83% 

2 64% 41% 85% 70% 

3 53% 5% 98% 63% 

 

Table 2: Performance metrics: SVM 

Dataset 

mode 

Diag. 

Accuracy 

Sensitivity Specificity ROC 

AUC 

1 88% 86% 91% 95% 

2 74% 73% 76% 82% 

3 58% 79% 40% 67% 

 

Table 3: Performance metrics: Neural Networks 

Dataset 

mode 

Diag. 

Accuracy 

Sensitivity Specificity ROC 

AUC 

1 90% 89% 92% 78% 

2 74% 71% 77% 63% 

3 61% 54% 67% 52% 

 
 
An example of a ROC curve obtained from the 
classifiers is shown in Figure 1. 

 
Figure 1: ROC curve of SVM at mode 2 

DISCUSSION 

In this paper, we have evaluated the 
feasibility of a breast tumor detection device, 
which uses machine learning to identify the 
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presence of a lesion from the scattered 
microwave data. The data used for classification 
was simulated using 2D models of breasts and 
the scattering patterns they produced. This 
information was gathered into a dataset of 871 
randomly generated models that was further 
processed in three possible modes. 

Each of the modalities produced a different 
samples-to-features ratio. This ratio has a 
direct impact on classification performance. 
Generally, a higher ratio allows for better 
classification rates.  While Mode 1 has the 
biggest samples-to-features ratio of all dataset 
modes, it assumes all five positions of a single 
breast model are separate phenomena. This 
cannot occur in practice, as a priori information 
from a patient will not be available.  Mode 2 
more realistically, takes only one position into 
account and produces ROC AUC values similar 
to x-ray mammography. 

The third mode showed poor performance 
that can be attributed to the low number of 
samples in comparison to the feature array.  
More simulations need to be carried out to 
improve the classification performance in mode 
3.  Additional pre-processing techniques that 
make use of data from all five positions are 
being investigated to improve classification 
rates even further. 
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