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I. INTRODUCTION  

Emotion recognition through physiological 

recording is an emerging field of research with 

many promising results stemming from 

laboratory control studies. The aim is to identify 

potential patterns in autonomic activity, 

indexed by features like heart and respiration 

rate, which are specific to the basic emotions 

(i.e. fear, disgust, sadness, anger and 

happiness) [1].  A common experiment 

paradigm is to employ non-invasive, surface 

sensors to record physiological responses of 

subjects presented with emotionally evocative 

stimuli [2].  Previous studies have conducted 

such experiments using stimuli in the form of 

film clips [3], pictures [4] and personal imagery 

[5].      

Physiological response pattern analyses that 

have been explored in emotion recognition 

include linear discriminants, Mahalanobis 

distance classifiers, support vector machines, 

cluster analysis and classifier ensembles 

[2,4,5].  Classification accuracies have been 

reported to range from 60 to 90% depending 

on the classifier used and the individual [2,3,4].  

However, many of these techniques are 

supervised and require a priori knowledge of 

which segments of signal are associated with 

baseline or emotional response.  Practical 

applications would ideally adopt an approach 

more akin to sequential (online) change or 

trend detection [6]. 

Singular spectrum analysis (SSA) is a 

relatively new method capable of online change 

point analysis that does not assume prior 

structure of the data (e.g. normality, an 

assumption that is common in many change 

point algorithms and one that is rarely met by 

physiological data).  The algorithm works by 

finding underlying structures in observed data 

and announces a change when incoming data 

no longer fit that structure.  In this paper, we 

implement a version of SSA for exploratory 

analysis of change points that may be present 

during baseline-to-stimulus transitions in 

physiological signals with the aim of 

determining the differences of these states 

between sitting and walking conditions. 

The remainder of this paper is outlined as 

follows.  Section II will give a brief description 

of the SSA algorithm.  Section III describes the 

instrumentation and methodology employed to 

gather physiological data from participants.  

Section IV describes our methods of analysis 

and section V exhibits some results obtained 

from SSA with some interpretations.   

II. SINGULAR SPECTRUM ANALYSIS 

Here we provide a brief description of the 

SSA algorithm according to [7].  For a more 

detailed treatment on the subject, see [8].   

Given a time series xt = {x1, x2, … xT}, 

where the subscripts are time indices, The 

algorithm follows these steps for each possible 

point in the time series: 

1) Construct L-dimensional subspace 

Construct the trajectory matrix: 

H(t) = 
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Where N is the window length, M is the lag 

parameter (set to  2/N by [7]) and K = N-M+1 

by definition.  Note that H is a Hankel matrix 

where elements in the skew-diagonals are 

equal.  The next step is to decompose the lag-

covariance matrix HHT using singular value 

decomposition giving M eigenvectors.  Select a 



group L, which is a subset of l < M 

eigenvectors to represent a subspace in .M  

2) Construct Test Matrix  

The test matrix is constructed similarly to 

the trajectory matrix: 

Xtest(t) = 
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Where the parameters p and q determine 

the amount of overlap with the trajectory 

matrix and how far ahead you want to detect 

changes in the time series. 

Calculate distance statistic   

The distance between a column Xj in Xtest 

and the l-dimensional subspace defined by the 

group L is computed as: 
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Where IM is the MxM identity matrix.  The 

distance statistic at the point t is then 

calculated as: 
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 [7] suggests normalizing this distance 

statistic as: 
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A CUSUM-type statistic is then calculated 

as: 
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Where [a]+ refers to max{0,a} and κ is a small 

nonnegative constant set to )3/(1 MQ  by [7].  

The statistic W is then compared to a 

threshold: 
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Where Z  is the (1- ) quantile of the 

standard normal distribution. Change points are 

announced when W exceeds this threshold.  

Variants of the SSA algorithm described 

above exist (See [9] as an example).  We 

applied this SSA algorithm to features extracted 

from physiological recordings of subjects that 

were either sitting or walking during baseline 

and stimulus presentation periods for 

exploratory change-point analysis. 

III. METHODOLOGY 

Instrumentation 

We recorded electrocardiogram (ECG), skin 

conductance and respiratory activity using  

Thought Technology’s (Montreal, Quebec, 

Canada) Procomp set of physiological sensors.  

The ECG was recorded using the three-lead 

configuration (Einthoven’s triangle) using 

disposable Ag/AgCl gel electrodes.  Skin 

conductance was recorded from the middle 

phalange of the second and third digits of the 

non-dominant hand.  Respiratory activity was 

measured using strain gauge belts worn around 

the thorax and abdomen.  All signals were 

sampled at 256Hz.  

Participants Information 

Fourteen subjects (7 males) between 18-27 

years of age (mean=23, std=2.48) were 

recruited to participate in the experiment.  All 

subjects had no known cardiovascular or 

psychiatric illnesses.  Each subject was 

instructed to abstain from caffeine and other 

stimulants 24 hours prior to the experiment 

date and to wear shoes suitable for walking on 

a treadmill.  Upon arrival to the experiment 

facility, subjects were re-briefed about the 

purpose of the study and the sequence of 

events in the experiment.  Consent was 

obtained after addressing any questions the 

subject may have had. This study was reviewed 

and granted ethical approval by the Bloorview 

Research Ethics Board.      

Experiment Protocol 

After obtaining consent, the physiological 

sensors were attached to the subject followed 



by measuring the subject’s preferred walking 

speed on the treadmill using a method similar 

to that described in [10].  The subject was then 

given a trial run of the experiment stimulus 

presentation application (a custom program 

written in Visual Basic) and an explanation of 

the Self-Assessment Manikin for rating the 

stimulus items.  Emotional stimuli were drawn 

from the International Affective Pictures 

System (IAPS) and the International Affective 

Digitized Sounds (IADS) libraries to allow 

comparison of ratings of items to nominal 

scores 

The main experiment consisted of four 

randomized blocks – the result of a 2x2 factor 

crossing of mobility state (sitting vs. walking) 

and stimulus modality (visual vs. auditory).  

Each block began with a three-minute baseline 

segment followed by twenty cycles of stimulus 

presentation.  Each cycle consisted of a 

randomized stimulus item presented for 8 

seconds followed by an untimed subject rating 

section using the SAM and discrete emotion 

scores and ended with another 40-second 

baseline to allow physiological signals to settle 

before the next stimulus.  Figure 1 contains a 

summary of the sequence of events in each 

experiment block. 

IV. ANALYSIS 

Signal Filtering and Feature Extraction 

RR intervals were extracted from the ECG 

signal using a modified version of Pan and 

Thompkin’s QRS detection algorithm [11].  

Briefly, the ECG is band-passed, differentiated 

and squared before applying a moving 

integrator to produce another signal with peak 

locations corresponding to QRS complexes.  An 

adaptive threshold is then applied to these 

peaks to specifically locate QRS complexes. 

Respiration and skin conductance signals were 

low-pass filtered using a 4th order Chebyshev 

Type II digital filter with cut-off frequency of 

4Hz and 1Hz  respectively and a ripple factor of 

20dB.  A peak detection algorithm based on 

detecting zero crossings of an approximate 

derivative signal was used to determine 

inspiration/expiration times and amplitudes in 

the respiratory signal.  Skin conductance 

responses were detected with the same peak 

detection algorithm. 

+

Baseline (30 sec)

Stimulus (8 sec) Self-Report 
Scales*

+

Baseline (3mins)

Repeat until end 
of stimuli set

 

Figure 1: Sequence of events for one block of the 
experiment. *Self-Assessment Manikin and discrete 
emotion rating scales 

SSA was applied to the time series of RR 

intervals, inspiration/expiration times with 

parameters N = 32, M = N/2, p = K+1, q = 

K+5.  Parameters were chosen based on the 

knowledge of the cyclic behavior of heart rate 

with respiration rate.  The change in trend of 

features was calculated as the difference in 

linear slope in M-point regions before and after 

a detected change point.  

Data from four participants were excluded 

due to recording problems during the 

experiment. The Digital filtering, feature 

extraction and SSA change-point detection 

were implemented using MATLAB R2010a  

V. RESULTS AND DISCUSSION 

SSA Change Points  

Due to space limitations, only RR-interval 

feature data will be reported here.  Our 

exploratory SSA suggests that baseline 

conditions are non-stationary (See Figure 2 for 

an example of the aforementioned oscillatory 

structure of heart rate). Change point structure 

was also found to be subject-dependent, 

possibly due to varying levels of attention 

during the baseline segments or innate 

physiological differences. Table 1 contains the 

results of the trend analysis for RR-intervals 

showing differences in trend changes across 

change points between baseline and stimuli 

segments. The primary observation is the 

predominant negative sign in the change of RR-

interval slope across change points suggesting 

the general change is an increase in heart rate 

during such events.  The paired T-statistic for 

the difference in the amount of slope change 

between baseline and stimulus is significant at 

the 5% level but we are hesitant to draw 



conclusions because the number of change 

points in each is grossly unbalanced due to the 

timing of the respective segments.   

 

Figure 2: RR-interval change points (vertical red lines) 
found in a baseline segment suggesting non-stationarity.    

    Table 1: Slope changes of RR-interval series across 
change points by subject for sitting data.  Values in table 
are: mean of slope change (# of change points in mean) 

Subject Change Point Location 

Baseline Stimulus 

1 -7.8 x 10-4 (142) -7.7 x 10-4 (32) 

2 0.0037 (89) -0.0077 (21) 

3 -0.0021 (87) -0.0071 (17) 

4 0.0022 (55) 8.8 x 10-4 (17) 

5 -0.0167 (76) -0.0221 (25) 

6 -0.002 (59) -0.0047 (14) 

7 -0.0051 (35) -0.0179 (6) 

8 0.0049 (92) -0.0098 (16) 

9 0.0069 (74) -0.0021 (17) 

10 -5.0 x 10-4 (81) -0.0047 (11) 

Total -0.001 (790) -0.0076 (176) 

  

However, this analysis shows the potential of 

the application of SSA to detect trend changes 

in physiological data.  

Noise Filtering 

The quality of the feature time series 

depends heavily on noise rejection.  We used 

digital filtering to reject noise (like most online 

systems) but SSA can also be applied to 

filtering.  For example, [12] applied SSA on 

kinematic signals and demonstrated (visually) 

smoother results than with conventional digital 

filtering.  

CONCLUSION 

We explored the utility of SSA on 

physiological signals to detect change points in 

a baseline-vs-stimulus protocol and preliminary 

results suggest baseline feature data contain 

non-stationary structure that will need further 

characterization.  
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