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INTRODUCTION 

“Brain-machine interface” (BMI) broadly 

describes technologies whereby electrical 

impulses from a user’s brain are used as control 

signals for one or more output pathways. In 

many cases, this takes the form of signals from 

primary motor cortex, which can be generated 

by the user intending to move relevant muscles 

(Lacourse et al 1999). The purpose of a BMI 

system is typically to provide access to either 

communication devices or prosthetics for 

individuals with severe paralysis (for example, 

in cases of high-level spinal cord injury). To 

date, the majority of BMI systems have used a 

“synchronous” paradigm, meaning that a user 

must generate neural signals at a time specified 

by a cue. However, “asynchronous” systems 

(wherein the system continually searches for 

inputs from the user) are likely to be more 

intuitive, user-friendly, and versatile (Townsend 

et al. 2004). A major step in developing 

asynchronous BMIs will be to determine 

effective methods of detecting the timing of a 

user’s intention (in the case of recordings from 

primary motor cortex, this is the user’s 

intention to move). 

The goals of this study were twofold. The 

first was to develop an automated analysis 

program for assessing the accuracy of 

movement onset time predictions. The second 

goal was to determine the ideal method of 

predicting movement onset time in pilot data. 

These methods included both common 

techniques within the literature (for example, 

observing changes in specific bandpowers 

within the signal [Pfurtscheller & Lopes da Silva 

1999]) and more novel ones. 

METHODS 

Four subjects took part in the study – two 

with implanted electrocorticogram (ECoG) 

electrodes, and two with non-invasive 

electroencephalogram (EEG) electrodes. All 

recordings were taken from over the subjects’ 

primary motor cortices. Each subject was, while 

comfortably seated, asked to perform a variety 

of motor tasks with the arm contralateral to the 

recording site. The specific tasks varied from 

subject to subject, but typically included both 

simple tasks (ie. elbow flexion, wrist flexion) 

and complex tasks (ie. handwriting, playing 

simulated tennis on a Nintendo Wii console). In 

most cases, movements were self-paced, and 

were performed 25-30 times. While the 

movements were being performed, neural data 

was being collected at a sampling frequency of 

200 Hz. Electromyogram (EMG) data was 

simultaneously being collected from relevant 

muscles. 

Data analysis was conducted offline, using 

custom Matlab scripts that allowed for analysis 

to occur in an automated fashion. Three 

consecutive steps were applied. In the first 

step, the neural data was preprocessed. The 

original monopolar channels were applied, as 

were bipolar (differential) channels, and 

principal components (obtained from principal 

component analysis of the original monopolar 

channels). In the second step, these 

preprocessed signals were used to derive 

“criterion” signals. A sliding time window was 

applied to the preprocessed signal, and within 

that time window, one of several functions was 

applied to obtain a single value. That value was 

then used as a single data point in the time-

variant criterion signal. The time window was 

moved one data point forward, and the next 

point in the criterion signal was obtained in an 

identical fashion. The functions used to 

generate criterion signal points were as follows: 

bandpower (at the following frequency ranges: 

1-5, 8-12, 12-20, 20-30, 36-44, and 90-99 

Hz), bandpower integral (the sum of all 

frequency component amplitudes), phase (at 



the same frequencies as were used for 

bandpower), variance, sum of differences, 

fractal dimension, and spectral entropy. In the 

final step, the discriminative ability of the 

criterion signal was determined using receiver 

operating characteristic (ROC) analysis. A set 

threshold was applied to the EMG signals, to 

determine whether the subject was ‘active’ or 

‘inactive’ at any time point. A range of 

thresholds was similarly applied to the criterion 

signals, with the intention of scanning the 

entire range of criterion signal values, to 

provide a binary prediction of whether the 

subject was ‘active’ or ‘inactive’ at each time 

point. For each threshold, the true positive rate 

and false positive rate was determined by 

considering the agreement between the 

thresholded EMG and the predictions. Based on 

these values, the discriminative ability of the 

criterion signal was determined as the area 

under the ROC curve (AUC) (made by plotting 

all of the true positive rates and false positive 

rates on a Cartesian axis). An AUC value of 0.5 

indicated random chance, while a value of 1 

indicated perfect predictive ability. The analysis 

was repeated using a range of values for 

several parameters. The manipulated 

parameters are: length of time window applied 

to generate each criterion signal point, relative 

time window within which a prediction can be 

considered to ‘match’ with a threshold EMG 

point, which function is applied to generate the 

criterion function, which type of preprocessing 

is used, and which channel or principal 

component is used. 

In addition, “change-point analysis” was 

applied, as described in Moskvina & Zhigljavsky 

(2003). While this analysis was largely similar 

to that conducted within the regular analysis 

described above, methodological issues 

prevented the method from being directly 

implemented within the automated framework. 

A separate change-point analysis program was 

run on the preprocessed data, which produced 

a time-variant signal as an output. This signal 

was then used as a criterion signal to continue 

the later analysis. 

RESULTS 

Results of the ROC analysis are presented in 

Figure 1. Specifically, this graph represents the 

maximum AUC value obtained by applying a 

given analysis function to a given trial of 

movement. 

 
 

 

 

 

 

 

Figure 1: Summary of the best AUC values 

obtained for a given pairing of trial and analysis 

type. Lighter shades indicate more accurate 

predictions, whereas darker shades indicate 

poorer predictions. An AUC value of 0.5 

indicates random chance, while an AUC value of 

1 indicates perfect prediction. 

Figure 2 presents the most accurate 

predictions generated by this system. 

 

Figure 2: Sample of the most accurate 

predictions generated (ROC curve area = 

0.863). These results are from an elbow flexion 

trial with Subject 2 (ECoG), and are based on 

increases in the sum of differences. 

Tables 1 and 2 show the percentage of 

parameter value combinations which generate 

predictions with AUC ≥ 0.7. If a particular 

parameter value is ideal, it should have a 

greater percentage of trials generating these 

“successful” predictions. 

 

 



Table 1: Summary of the relative 

frequencies with which specific parameters 

gave rise to successful movement onset 

predictions in the ECoG subjects. 

  
Subject 
1 

Subject 
2 

  
Percent 
successful 1.5% 3.2% 

Window 
length 0.25 s 3.5% 26.8% 

  0.5 s 31.5% 33.8% 

  1 s 65.0% 39.4% 

Acceptable 
window 

0.5 s pre-
EMG 5.2% 21.1% 

  

0.25 s pre- 
or 0.25 s 

post-EMG 34.5% 31.7% 

  
0.5s post-

EMG 60.3% 47.2% 

Preprocessing Monopolar 5.3% 28.5% 

  Differential 64.9% 46.5% 

  PCA 29.8% 25.0% 

 

Table 2: Summary of the relative 

frequencies with which specific parameters 

gave rise to successful movement onset 

predictions in the EEG subjects. 

  
Subject 
3 

Subject 
4 

  
Percent 
successful 7.8% 0.6% 

Window 
length 0.25 s 22.0% 8.7% 

  0.5 s 33.6% 33.5% 

  1 s 44.4% 57.8% 

Acceptable 
window 

0.5 s pre-
EMG 58.3% 38.5% 

  

0.25 s pre- 
or 0.25 s 

post-EMG 39.3% 27.5% 

  
0.5s post-

EMG 2.4% 24.0% 

Preprocessing Monopolar 31.9% 11.3% 

  Differential 48.2% 38.4% 

  PCA 20.0% 50.4% 

 

In general, it is noted that most criterion 

functions (excluding change-point analysis, 

phase, and the 90-99 Hz bandpower) were able 

to generate accurate predictions in at least 

some cases. In general, ECoG cases were able 

to generate more accurate predictions than EEG 

cases. However, other than this, no clear 

pattern was apparent in the effects of other 

parameters on the eventual accuracy of 

predictions. 

DISCUSSION 

It is suggested, based on the present 

results, that neural signals from primary motor 

cortex, as measured through EEG and ECoG, 

contained sufficient information for accurate 

predictions to be made about the timing of 

many different types of movements. Fractal 

dimension, spectral entropy, sum of 

differences, most bandpowers up to 40 Hz, the 

bandpower integral, and variance were all 

suggested as appropriate methods for deriving 

this information. However, it was also shown 

that the accuracy of these predictions was 

highly dependent upon a number of different 

parameters, in ways that were not always 

consistent. Parameter sets that provided ideal 

results for one subject and movement type may 

not have provided similar results for another 

movement or another subject. It is therefore 

suggested that a wide range of parameter 

combinations would need to be tested for each 

case if the techniques developed herein are to 

be successfully applied to an asynchronous BMI 

system. 
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