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INTRODUCTION 

Social network analysis is the field devoted 

to the study of the systems of human 

interaction, including patterns of interactions 

(who interacts with whom and for how long), 

networks that emerge among individuals, and 

patterns of interaction within and between 

networks [1]. Data collection has traditionally 

relied on self-reported data from small numbers 

of people (“where I was, whom I was with, and 

for how long”). Known limitations are that data 

generally provide only snapshots in time and 

are influenced by known, systematic biases in 

self-reporting. The emergence of personal 

mobile communications has opened up new 

possibilities in collecting behavioral data from 

larger populations, over continuous periods of 

time, and with higher accuracy than self-

reported data. The follow-on uses of the data – 

beyond theoretical insights into human 

behaviour and interaction patterns – include 

applications in fields as diverse as 

organizational management, city planning, and 

disease spread as a public health concern. This 

work developed a 3G/4G Smartphone 

application to gather interaction and location 

data logged by Bluetooth connectivity between 

individuals’ personal mobile devices 

(e.g.Smartphones). The combined data formed 

a database of contact data, from which 

computational techniques were developed to 

generate and display meaningful social contact 

graphs, and further, on which disease spread 

models (SIR and variants) were simulated in 

the interest of understanding disease spread 

through a population.  

METHODS 

The application was developed on Android 

and BlackBerry platforms. In pilot testing, 

several probes ran the application which 

maintains explicit time, date, and location data 

(device GPS-enabled), augmented with 

connection attempts to proximate devices that 

are discoverable via Bluetooth at regular 

intervals (e.g. 30 sec). The connection data 

includes the probe device ID (physical MAC 

address of the device, plus the device meta-

identity) and the device ID of other devices 

within Bluetooth connectivity range (MAC 

address and meta-identity, if available). The 

collected data is then logged to a web database 

service where it can be mined for contact 

durations and associations. The application was 

pilot tested with four probe devices, in total 

collecting over 500,000 contact records over a 

four month duration. Implementation of a 

larger-scale implementation with 100 probe 

devices is currently underway. The pilot data 

form the basis for ongoing work in 

computational techniques for contact graph 

generation and visualization, including location-

based extensions such as overlaying contact 

networks on map utilities. Extensions to other 

wireless contact data sources, such as WiFi and 

RFID scanning are also in development, as well 

as augmenting the data with location-based 

data from cellular service providers. The value 

of contact graphs (contact network graphs) is 

derived when used as input to disease modeling 

tools, such as a stochastic SIR model and 

variants. This allows for modeling of qualitative 

impacts of disease intervention strategies such 

as vaccination, quarantine, cohorting, and other 

contact-based interventions. The work also 

advances our understanding of the uncertainty 

and error associated with statistical data 

mining, and analytical techniques to reduce 

error.  

THE APPLICATION 

The application is denoted Face2Face (F2F), 

using Bluetooth enabled consumer devices 

(primarily Smartphones) to proxy for the user). 



 

Figure 1: The F2F app 

The F2F application polls for other devices 

within its proximate Bluetooth radio service 

area. This is typically less than 5 meters with 

obstructions and similar impacting range and 

signal strength characteristics as illustrated in 

the use case of Figure 2. 

 

Figure 2: The F2F Application Modus Operandi 

CONTACT GRAPH VISUALIZATION 

Contact graph visualization is useful as a 

mean of data portrayal, and is a computational 

challenge in and of itself.  Figure 3 illustrates 

the contacts acquired over a time window of 

two months with the short duration connections 

excluded for visualization purposes.  

   

Figure 3: Contact Graph Visualization 

Other forms of visualization allow one to 

track a probe device (user) and estimate 

contacts in proximity while en route. Figure 4 

represents one probe device in transit on the 

University of Manitoba campus.  

 

Figure 4: Contacts in Transit 

The contacts are extracted from a database 

and overlaid on Googlemaps. Again, contact 

duration windows and durations may configured 

as required. 

ANALYSIS 

Personal contact graphs are believed to 

display characteristics associated with heavy 

tail distributions, and this discussion uses the 

familiar concepts of small-world networks and 

80/20 rules.  The data collected from the probe 

phones, using Bluetooth proxies for personal 

contacts, display similar characteristics. The 

clearest representation of this feature is 

extracted from plots and analysis of the 



cumulative probability distribution of a given 

probe phone as shown in Figure 5. 

Pareto's law is given in terms of the 

cumulative distribution function (CDF), i.e. in 

this case the number of contacts (Nc) with 

duration larger than or equal to the duration is 

an inverse power of the duration as expressed 

below: 

 

 
 

 
Figure 5: Contact cumulative distribution 

function (Pareto) 

From this type of data, the exponent 

associated with the power law distribution can 

be calculated. In the case of Figure 3, the 

exponent is calculated to be 1.731 indicating a 

heavy tail. Not unexpectedly, the majority of a 

probe’s contact duration is spent with a small 

number of devices probed. In the case of the 

data collected for the probe of Figure 3, 80% of 

the time was spent with just 14 devices, out of 

a total number of 2400 contacts made. 

These patterns and characteristics of the 

contact data can be used in models of disease 

spread, particularly for contact- or proximity-

based infections such as influenza or other 

respiratory illness.  The heavy tail and 

exponents can be extracted and used in larger 

scale modeling.   

Using notions of the 80/20 rule extracted 

from the data, an SEIR disease spread model 

(SIR variant) was built and run [2]. The 

infection was an influenza-like illness (ILI). In 

the case of Manitoba, isolated northern 

communities were particularly hard hit during 

the first wave of the 2009-2010 influenza 

outbreak. Although we are not attempting to 

replicate a particular community, the population 

we considered was a model on the order of 

5000 people in relative geographic isolation.  

This provides a closed system for modeling 

purposes. 

The model used as a base was a simple 

SEIR agent-based or discrete model. It is a 

phase type model where a person can be in any 

one of several health states.  These states are 

typically denoted Susceptible, Exposed, 

Infected, Recovered. This is a minimal type 

phase space and is illustrated in Figure 6. 

 

Figure 6: SEIR Compartmental Model. 

In this work, the Infected state consists of 

two phases (work and home). In general, a 

person may be infected and infectious at work 

prior to a period where they may ill and at 

home (immobile). Each person has essentially 

two contact lists: one associated with their day 

to day business activities with parameters 

governed by the 80/20 “rule” and derived from 

the probe devices; and, their home contact list 

representative of family members/housemates. 

Figure 7 illustrates the SEIR model over a two 

month period, using data collected from the 

four probe devices and illustrating the spread of 

an infection through a population of 5000 

persons. During this simulation, each person 

had a contact list of approximately 10 close 

contacts, reflecting the 80/20 rule found from 

the Pareto distribution associated with the F2F 

contacts. The simulation, although coarse, 

included a circadian rhythm where each 

individual was also provided with a contact list 

of two persons during the night (every second 

12 hour cycle) in addition to their daytime 

contacts.  The probability of becoming infected 

was p=0.0025. This was implemented as there 

was a 0.0025 probability or becoming infected 

if one of your close contacts was infected, per 

hour of contact. This infection probability is an 



adjustable parameter associated with the 

simulation but consistent with considerably 

larger models. 

 

Figure 7: SEIR Compartmental Model. 

The resulting curves are typical of 

compartmental SIR models. The only real 

difference here is that these simulations are the 

result of individual stochastic models with 

contact lists governed by the observation of the 

80/20 “rule” arising from the Pareto distribution 

of inferred contacts from an automated 

proximity contact pattern generator. In 

epidemiology, Ro is denoted the basic 

reproduction number of the infection and is the 

number of secondary infections a single 

infected case will cause. In the case of an 

nfluenza strain (e.g. 1918) Ro has been 

estimated to be between 2-3. In Figure 7,  Ro 

is approximately 1.9. 

The unique contribution of the work is the 

insights into technologies that gather adequate 

amounts of real data, non-intrusively, to 

provide meaningful input into disease spread 

models, where these models have typically 

relied on simulated data.   

To further explore conditions that may be 

representative of remote northern 

communities, the number of close prximity 

contacts during the “home cycle” was varied 

from 2 to 5 as illustrated in Figure 8.  This 

represents a tendency toward large households 

and/or overcrowding in homes. Qualitatively, 

the simulations indicate that a major 

contributing factor in the spread of an ILI would 

be overcrowding. The overcrowding 

exacerbates the infection spread as a 

consequence of increased exposure due to in 

increased contact[3]. Another potential public 

health concern is thus associated with an 

intervention that recommends for a infected 

person to stay home. In environments with 

severe overcrowding in homes, this may in fact 

be deleterious. In these scenarios it may be 

well worth setting up temporary mobile 

facilities to house and treat persons infected as 

opposed to recommending they stay home.  

Further investigations into the sensitivity of 

household size as a factor in infection spread is 

also warranted.   

 

Figure 8: Impact of Overcrowding. 

SUMMARY 

This paper summarized a research program 

where a disease spread model was influenced 

by real data as an inference for personal 

contact. While limitations abound, the work 

highlighted the opportunities inherent in 

personal mobile devices as means to effectively 

and non-intrusively gather real data on social 

contact patterns.  
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