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1. INTRODUCTION 

Bacterial biofilms are microbial structures growing 
on surfaces and wetted interfaces in aqueous 
environments. They form when the bacterial cells 
attach to the surface and start producing an 
extracellular polymeric matrix in which the growing 
bacterial cells embed themselves. Bacterial biofilms 
play a positive role in waste water treatment while are 
a hindrance to treatment of bacterial infections in 
humans. Confocal laser scanning microscopy (CLSM) 
is the method of choice for studying structure 
formation of live biofilms in laboratory flow-cell reactors 
after labeling the bacterial cells with fluorescent 
markers. Quantitative analysis of the CLSM data, 
however, requires an accurate segmentation 
procedure that distinguishes biomass from the 
surrounding fluid. A literature survey of biofilm 
segmentation techniques [1] reveals that thresholding 
[1-5] is the preferred method. This method though 
simple is not optimal in the presence of noise and 
depth intensity attenuation (IA) artifacts. Although the 
former issue was addressed in [5], to our knowledge 
no attempts have been made by biofilm research 
community to quantify and remedy the effects of IA in 
CLSM data of biofilms.  

In CLSM images, depth intensity attenuation 
occurs due to a combination of optical effects which 
include scattering, absorption and refraction [8-11]. As 
a consequence, the contrast of images acquired at 
increasing depth becomes reduced and identification 
of structures present in the image becomes difficult. 
Some of the approaches that have been put forth to 
address this issue are light attenuation modeling [8,9] 
and histogram renormalization [9,10]. The first 
approach attempts to restore image quality using 
physical models of light attenuation which is not 
practical due to number of simplifying assumptions 
used. The second approach is based on histogram 
renormalization techniques which include histogram 
equalization, dynamic histogram warping (DHW) [9] 
and histogram specification [10]. According to [10] 
histogram  

 
 
equalization and DHW may over-enhance the images, 
resulting in the appearance of false contours and 
amplification of noise. Based on these considerations, 
exact histogram specification can be considered to be 
a better alternative. In this paper, we implement exact 
histogram specification as presented in [9] and [10] to 
perform IA followed by edge enhancing nonlinear 
diffusion filtering (DF) to suppress noise before 
performing segmentation using thresholding based on 
Otsu’s method. The importance of doing intensity 
attenuation correction as a preprocessing step is the 
primary highlight of this work.  

2. MATERIALS AND METHODS 

Biofilm CLSM image data obtained in [6] of 
Pseudomonas sp. grown in multichannel flow cells 
with bacteria cells stained with green fluorescent 
protein was used in our study. The biofilm in [6] was 
observed using a Zeis CLSM microscope with 20X 
objective and excitation from 488-nm argon laser. To 
investigate the effects of intensity attenuation (IA), four 
biofilm parameters also used in [6] namely biomass, 
average thickness, roughness and surface to 
biovolume ratio were chosen. They were evaluated 
using corresponding routines available in COMSTAT 
[4] program which runs as a script in Matlab

©. The 
definitions of these parameters and the way they are 
computed is explained in [1] and in COMSTAT user 
manual [4]. The remainder of this section will describe 
the image processing procedures that were used to 
obtain the four biofilm parameters above as well as the 
validation procedure which was key in demonstrating 
the effects of IA on biofilm segmentation. 

2.1 Intensity Attenuation Correction 

Depth intensity attenuation is corrected by means 
of exact histogram specification described in [11,12]. 
To use this method, the reference histogram, Href, 
must be known beforehand. In [10] Href corresponds to 
the histogram of the “best quality” image in the CLSM 



stack. The quality index referred to as automated 
reference detection estimator (ARDE) (defined as a 
product of mean intensity, contrast and mean gradient 
magnitude) is used to make this decision. Higher 
values of ARDE are expected to correlate with better 
image quality. The disadvantages of selecting Href in 
this manner is that it may not be representative of the 
entire data set and consequently lead to over 
enhancement of images where IA is most pronounced. 
For this reason Href was computed using the standard 
histogram selection approach described in [9], which 
was largely based on the work of Nyúl et al. [13].  The 
main steps of calculating Href are described in [9,13]. 

Once Href is known, the intensities of any 2D 
image can be remapped to produce a histogram which 
matches Href almost exactly. Exact histogram 
specification is achieved by strict ordering among 
image pixels as described in [11,12]. The main idea is 
to refine natural ordering of pixels using the average 
values of its neighborhood. For every pixel the filter 
responses are arranged into a feature vector where 
the first element corresponds to the original intensity 
value, the second element corresponds to the 
response of the second filter, etc. These feature 
vectors are then sorted lexicographically to refine the 
natural pixel ordering. The overall ordering accuracy 
(OA) can be measured by the ratio of unique filter 
responses and the total number of image pixels. For 
natural images OA is usually above 95% and so 
induced ordering is very close to being strict. 

2.2 Nonlinear Diffusion Filtering 

Diffusion filtering was used to suppress noise (by 
encouraging intra-regional smoothing) and enhance 
the edges of the biofilm structures. Let Ω be the image 

domain and let f(x): Ω →   be the original image. 
The filtered image, u(x, t), was obtained as a transient 
solution of the diffusion equation 

  uuDdivut   (1) 

with the original image as the initial condition on Ω, 
u(x,0)=f(x), and Neumann boundary conditions equal 
to zero (which is equivalent to reflecting intensities at 
the boundaries). In case of an-isotropic 

diffusion,  uD  , is a spatially dependent scalar 

quantity commonly referred to as diffusivity or an 
edge-stopping function. Eq.1 was discretized using an 
explicit scheme described in [14] using 0.1 as a time 
step value. Due to the size of the volumetric images 
(1024x1024x23), semi-implicit and implicit schemes 
were not considered. Diffusivity and contrast threshold 
parameter intrinsic to it were both computed according 
to [15].  

2.3 Segmentation 

Once the CLSM images were preprocessed using 
exact histogram specification and diffusion filtering, 
biofilm segmentation was performed. The global 
threshold was calculated using Otsu’s criterion 
designed to maximize the inter-class separability [5] 
with the biofilm and background making up the two 
classes.  It was observed however, that this approach 
consistently overestimated the threshold in 
comparison to the threshold deemed optimal by the 
operator. This occurrence can be attributed to the 
unimodal nature of the histogram. To correct for this 
discrepancy a correction factor was calculated based 
on the average of manually determined thresholds and 
applied to the Otsu threshold.  

2.4 Validation 

To demonstrate the effect of depth IA correction 
on calculation of biofilm parameters steps outlines in 
Algorithm 1 were performed. 

Algorithm 1: 
1. In a given CLSM stack, identify the slice which has 

the highest ARDE score [10]. Let this image be Io. 
2.  Segment Io using procedure described in section 

2.3 and let this image be Iref. Iref is the reference for 
assessing the accuracy of subsequent segmentation 
results. To carry out volumetric segmentation 
assessment Io is replicated along z-direction to 
match the dimensions of the image. 

3. Simulate a dataset which has been corrected for 
depth IA. This is done by specifying Href in Io and 
then replicating the resulting image on all levels of 
the CLSM stack. Call this dataset CLSMIC. 

4. Simulate a dataset which has not been corrected for 
depth IA. To do this, find the histograms of all cross 
sections of the CLSM image. Let Hi be the histogram 
of the i

th
 slice. Specify Hi to Io on all levels of the 

CLSM stack. Call this dataset CLSMW/O-IC. 
5. Perform diffusion filtering as describe in section 2.2 

on both CLSMIC and CLSMW/O-IC.  
6. Segment CLSMIC and CLSMW/O-IC as described in 

section 2.3. 
7. Quantify segmentation results from step #6 using Iref 

from step #2.  
 
In step #7 segmentation accuracy was quantified using 
two types of error: 
- Err1: Total volume error. This measures the total 

difference in biofilm volume between Iref and the 
segmented image CLSM stack. 

- Err2: Average distance from the biofilm surface. 
This measures the average distance between the 
surface of Iref and the surface of the segmented 
image CLSM stack. 



To reduce the bias of the segmentation procedure 
used to obtain Iref, the simulated CLSM stacks were 
partitioned into sixteen equal blocks (of the same 
height as the CLSM stack). Validation errors were 
computed for each block and the results from six 
blocks that had the highest Err1 were discarded. This 
ensured that only the parts of the CLSM image that 
were segmented correctly were considered. EMs were 
then calculated based on the average of the remaining 
ten blocks. 

3. RESULTS 

The suitability of the proposed biofilm 
segmentation procedure was tested on 5 sets of 
CLSM data of Pseudomonas sp. biofilm acquired at 
24-hour intervals. Each set consisted of 10 CLSM 
stacks corresponding to different positions along the 
length of the flow-cell reactor.  Figures 1 compares the 
effects of different preprocessing techniques on four 
biofilm parameters for CLSM images that were 
acquired 96 hours after inoculation. To demonstrate 
the independent and combined effects of IA and DF, 
biofilm segmentation and subsequent parameter 
calculations were performed in four different ways: no 
preprocessing, DF alone, IA alone and IA followed by 
DF. The four biofilm parameters biomass (P1), 
average thickness (P2), roughness coefficient (P3) 
and surface to biovolume ratio (P4) were computed for 
each case. Figure 2 shows biofilm parameters 
acquired with the four techniques listed above at five 
different times. From both Figures 1 and 2 we can 
conclude that failure to account for intensity 
attenuation will consistently underestimate P1 and P2 
by as much as 50%. It is also interesting to note that 
there is a very small difference between P1 and P2 
extracted from CLSM images without any 
preprocessing and CLSM images that underwent 20 
iterations of the diffusion filter. Furthermore, it appears 
the value of P3 is least sensitive to the preprocessing 
methodology and the value of P4 is more dependent 
on the number of DF iterations than anything else. 

Figure 3 shows the validation errors for three 
types of simulated CLSM data described in section 
2.4. Error #1 is the total volume error and Error #2 is 
average distance from the surface error. The results of 
P1 and P2 as shown in Figures 1/2a and 1/2b are 
consistent with the trend of Error #1 in Figure 3a, 
which clearly demonstrates that without IA correction 
the biofilm will be considerably under-segmented. 
Figures 3b and 3c verify that it is IA which is indeed 
the major source of segmentation error. In Figure 3 the 
errors are plotted as a function of cross section in the 
CLSM stack. Note that beyond a certain depth the 
severity of IA continually increases and it is in these 

bottom cross sections (approximately halfway through 
the CLSM stack) where under-segmentation occurs. 

4. DISCUSSION 

From the above results it is evident that using 
global thresholding techniques to segment CLSM 
images of biofilm in the presence of depth intensity 
attenuation will produce erroneous results. The effect 
of intensity attenuation can be corrected or minimized 
during data acquisition [9] if the gain of the CLSM 
detector is adjusted to maintain a specified mean 
intensity value. However, if the data had been 
collected already with a static gain, IA correction is a 
vital preprocessing step that aides in accurate 
evaluation biofilm parameters. It is to be noted, that 
despite its accepted importance, not much has been 
done in correcting for IA in biofilm research 
community. IA correction alone does not suffice to 
ensure accurate segmentation as noise artifacts get 
enhanced by the histogram specification procedure. 
For this reason the diffusion filter must be 
implemented as a secondary preprocessing operation. 
It is important to note that the validation procedure 
used to demonstrate the importance of IA correction 
(section 2.4) did not take into account the effects of 
noise which according to [8] becomes more prevalent 
with the increasing depth of the confocal plane. As a 
consequence the results shown in Figure 3a are not 
fully representative of the actual CLSM data. In this 
plot both validation errors are lower prior to DF than 
with any number of iterations of the DF. Nevertheless 
this figure still demonstrates the substantial effects of 
IA on final biofilm segmentation results.   

In conclusion, the necessity of IA correction is 
determined by the image acquisition protocol. In cases 
where the details regarding the CLSM settings are 
unavailable, the presence of a decrease in mean 
intensity indicates that IA is necessary. This trend can 
be detected automatically thus enabling future 
implementation of computationally efficient, fully 
automated and reliable biofilm segmentation 
procedures. 
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Figure 1: Biofilm parameters shown as a function of position in the 
flow-cell reactor at 96 hrs after inoculation. (a) Biomass (μm

3
/μm

2
). 

(b) Average thickness (μm). (c) Roughness coefficient. (d) Surface 
to biovolume ratio (μm

2
/μm

3
). 

 

Figure 2: Average biofilm parameters shown as a function of time. 
(a) Biomass (μm

3
/μm

2
). (b) Average thickness (μm). (c) Roughness 

coefficient. (d) Surface to biovolume ratio (μm
2
/μm

3
). 

 
 

 

Figure 3: (a) Validation errors for three types of simulated CLSM 
stacks shown as a function of diffusion filter (DF) iterations (0 
corresponds to the initial input to the DF). Case A - no IA correction. 
Case B - IA corrected using EHS. Case C - unmodified reference 
image replicated exactly on all levels of the CLSM stack. (b) 
Biovolume error shown as a function of CLSM cross section for four 
different preprocessing methods: no preprocessing, DF for 20 
iterations, IA correction and IA correction followed by 20 iterations of 
DF. Negative values indicate that the image is under segmented. (c) 
Distance from the surface error shown as a function of CLSM cross 
section. 

 
 

 
  


