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INTRODUCTION 

Quantifying the size, shape, number, and location 
distribution of axons in peripheral nerves is an 
important first step in understanding tradeoffs 
employed in the animal nervous system[1]. Scanning 
electron microscope images of nerve cross-sections 
from animals spanning a wide range of sizes, from 
shrew to elephant, can be helpful in elucidating these 
principles. Current methods of labeling axon and 
myelin (also called segmentation)  from these images 
commonly involve manually labeling each axon, which 
is extremely time-consuming as a single nerve can 
contain thousands of axons. In order to make this 
process more efficient, we developed a computer-
assisted neuron segmentation and analysis method. 

METHOD 

We acquired sciatic nerves samples from a shrew 
and an elephant, and fixed the samples in a mixture of 
4% paraformadehyde and 1% glutaraldehyde before 
staining them with osmium tetroxide and embedding 
them in plastic resin in preparation for imaging. A 
Bausch & Lomb 2100 Nanolab scanning electron 
microscope imaged the nerves at a magnification of 
approximately 1500x to obtain 512x477 pixel images. 
The microscope scanned at 10 kV using a spot size of 
7, the ‘low 6’ or ‘med 4’ resolution setting, and the 
backscatter detector. Shrew and elephant nerves had 
total diameters of approximately 0.3 mm and 2 cm 
respectively, with fascicle diameters of approximately 
0.2 mm and 0.5 mm respectively. 

Our methods can be divided into four main stages:  
image acquisition, image smoothing, axon labeling, 
and myelin labeling. In the first stage, we acquired 
high-resolution electron microscope images of nerve 
cross-sections. Due to instrument limitations, we could 
not acquire a single image of the entire nerve cross-
section and therefore scanned through the cross-
section to obtain a set of overlapping sub-images with 
identical size and resolution (Figure 1). In this way we 
made full use of the electron microscope resolution to 
capture as much information from the cross-section 

slices as possible. We developed an algorithm which 
stitched the sub-images together using normalized 
cross-correlation[2] as shown in Algorithm 1. 

In the second stage, our algorithm pre-processed 
the original image by smoothing it to remove noise. 
Since common convolution algorithms such as 
Gaussian smoothing or Laplacian smoothing usually 
smooth object boundaries as well as noise, potentially 
reducing segmentation accuracy, we used combined 
morphological operations[3] and morphological 
reconstructions[4] to smooth the original image. This 
method preserves boundaries while denoising the 
nerve cross-section, as shown in Algorithm 2. 

In the third stage, our algorithm segmented and 
individually labeled the axons on the pre-processed 
image. Most axons in our cross-section images are 
featured as dark areas, each surrounded by a light 
annulus of myelin. Early studies have reported 
successful applications of morphological operations in 
axon segmentation, making use of the geometric 
characteristics of axons[5]. Therefore we developed our 
algorithm based on morphological operations as 
shown in Algorithm 3.  

With Algorithm 3, the majority of axons can be 
extracted as connected components in the binary 
image and labeled individually using classic labeling 
methods[6]. However, some background areas (i.e. the 
dark gaps between axons) can be mislabeled as 
axons because they are also surrounded by myelin of 
different axons and form connected components on 
their own. To reduce the mislabeling of connected 
components as axons we added the following 
inclusion/exclusion rules: 

a. Number of pixels in a connected component. 
Axons have a finite range of possible sizes – a 
connected component with size outside this 
range is a background area. 

b. Number of myelin annuluses surrounding a 
connected component. Axons are only 
surrounded by one myelin annulus while 
background areas are surrounded by myelin 



annuluses from different axons. This rule 
requires an initial labeling of myelin. 

c. Shape of a connected component. The shape 
of normal axons is close to roundness, while 
background areas can have arbitrary shape. 
There are different ways to measure the 
“degree of roundness”. We used the 
parameter R = NB/N, where NB is the number 
of pixels on the boundary of a connected 
component, and N is the total number of pixels 
in that component. With size limited by rule a., 
components with shape close to round have 
small R, while components with concave-
convex shape have large. 

We set the parameters in above rules (such as 
sizes, numbers) by our prior knowledge to the nerve 
units’ physical prosperities. Using these rules, our 
algorithm removed the majority of mislabeled 
background areas from axon label set. 

In the fourth stage, our algorithm labeled the 
myelin annulus. On the cross-section image, myelin is 
featured as a higher-intensity annulus surrounding an 
axon with lower intensity values. We applied a 
boundary detection method known as the star 
algorithm[7] to find the myelin annulus around each 
axon.  This algorithm starts with a seed point at the 
geometric center of the axon and computes the 
gradient of image intensity values in a given radial 
direction. The first gradient change indicates the 
beginning of the myelin annulus, and the second 
gradient change indicates the end. The algorithm is 
repeated in each direction until all 360o are searched 
and all the pixels in the boundary annulus are labeled. 
We implemented external constraints such as myelin 
thickness to prevent the labeled myelin from “leaking” 
into surrounding areas in cases where the myelin 
boundary was difficult to identify. 

RESULTS 

We used our algorithm to analyze nerve units of 
shrew, rat, and elephant. Depending on the size of 
each nerve, between 6 and 50 sub-images were 
scanned to result in a stitched image covering the 
entire nerve cross-section. We implemented our 
algorithm in Matlab R2009a (Version 7.8.0.347, The 
MathWorks, Inc. Natick, MA), and implemented 
morphological operation and reconstruction using the 
Matlab Image Processing ToolboxTM. The typical 
processing time for a 4-6 million-pixel image on a PC 
(1.66GHz Pentium M Processor, 1G RAM) was 
approximately 5 minutes. 

The processing results of a sample image are 
shown in Figures 2 and 3. Most axons and myelin 

areas were successfully labeled individually, with only 
a few small axons with non-round shapes remaining 
unlabelled. To further reduce the mislabel rate 
(percentage of false detections plus failed detections), 
the residual mislabeled areas were manually corrected 
with a graphic user interface we developed in Matlab. 
According to our experience in manual correction, the 
mislabel rate of our automated method is under 10%. 

CONCLUSIONS 

In this paper we present an automated method for 
axon and myelin segmentation in scanning electron 
microscope images of nerve cross-sections. We have 
used this method to investigate the effect of animal 
size on axon size and number, in order to gain a 
deeper understanding of the physiological 
mechanisms used by small and large animals to 
control their movements. The method has reduced a 
large amount of repetitive manual work and has been 
proven to be well-suited for identifying axons, myelin, 
and their size characteristics. Future work includes 
adding more differential rules to further reduce 
mislabeling and developing machine learning methods 
to automatically determine external constraints that are 
currently manually set. 
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Figure 1: Stitching sub-images (colorful rectangles) to 
cover a whole nerve cross-section (grey circle). 
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Figure 2: One representative sub-image and 

processing results of each stage. 
 

 

 
Figure 3: Axon labels (colored areas) for a whole 

shrew nerve unit. 

ALGORITHMS 

Algorithm1: Stitching sub-images 
Input: Set of original sub-images I1, I2…, IN. 
Output: Stitched original image IO 

Set iteration number n = 1 
While n < N-1 
Do 

Let f = In, i.e. f(x,y) is intensity value location 
(x,y) in image In. Let t = In In+1. 

 

 
            Set IO = In U [In+1 with offset (u,v)] 
            Set n = n+1 
       End 

Algorithm 2: Pre-processing images 
Input: Original image IO. 
Output: Smoothed image IS. 
IE = erode(IO) 
IR1 = reconstruct(IE as marker, IO as mask) 
ID = dilate(IO) 
IR2 = reconstruct(IDC as marker, IR1

C as mask) 
IS = IR2

C 

where erode(), dilate(), and reconstruct() are 
morphological erosion, dilation, and reconstruction, 
respectively, and Ic is the complement image of I. 

 
Algorithm3: Segmenting axons 
Input: Pre-processed image IS 
Output: Binary segmentation of axons IAXON. 
ISB = threshold(IS) 
IAXON = open(ISB) 
where threshold() is the conversion of an intensity 

image into binary image using a threshold, and open() 
is the morphological open operation. 
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