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Abstract – A matching tool is introduced for use in 
noise reduction of single trial evoked potentials. 
Specific performance markers such as distortion and 
output SNR are investigated. Results show that the 
matching tool is able to significantly increase output 
SNR while reducing the effects of distortion. A new 
performance metric named the signal improvement 
quotient is also introduced. This measure represents the 
ratio of output SNR to distortion. It is suggested that this 
new metric may be a better measure of noise reduction 
abilities than a high output SNR. Other factors such as 
the limitations of the matching tool are also discussed. 

 

INTRODUCTION 

At CMBEC32, a method for estimating the 
conduction velocity distributions for single trial evoked 
potentials (EP) was presented. This method used a 
physiological based EP simulator optimized with a 
genetic algorithm (GA) to match simulated signals to 
experimental recordings. Named SEPfit, this method 
extracts conduction velocity distributions and 
distribution statistics from matched simulated signals 
to predict similar values for an input experimental 
recording. This worked proved successful as the 
authors were able to accurately predict the above 
mentioned parameters within a 5% significance level 
[1].  

Following this work, efforts were made to test the 
robustness of the newly designed tool. This new study 
paid specific attention to the signal-to-noise ratio 
(SNR) of the input signal. In the previous study, 
investigations were completed using only input signals 
of high SNR. In the new study tests used input signals 
of varying SNR. The results for this study also showed 
promise as the method was still able to accurately 
predict conduction velocity parameters with input 
signals of low SNR (~2). During the robustness study 
an unforeseen phenomenon was noted. Due to the 
inability of the method to match the input signal’s noise 
component, matched signals not only still predicted the 
conduction velocity parameters, but also presented an 
improved SNR as an output. It is the focus of this 
paper to investigate the inherent noise reduction 
properties of the aforementioned SEPfit. Key 
performance metrics such as distortion and the ratio of 

input to output SNR will be calculated. A new metric 
termed the signal improvement quotient (sIQ) will 
also be introduced. 

BACKGROUND 

EPs can be used clinically to diagnose various 
neurological disorders. These disorders can range 
from the testing of carpel tunnel syndrome to the 
monitoring of intracranial aneurysms [2, 3]. EPs have 
also been used in major surgical applications such as 
to monitor spinal cord function in the human body 
during scoliosis procedures [4]. Diagnoses based on 
EPs are usually determined by variations in signal 
amplitudes and onset latency. It has been shown that 
a decrease in signal amplitude or an increase in 
latency may indicate some neurological dysfunction 
[5]. There is however, no single consensus to what 
amount of variation denotes a significant change in 
neurological function. Amplitude changes have been 
reported to be used in the order of 25 -75% of the 
original signal while latency changes have been 
reported to range from 5-10% of the original value [5]. 
Because these variations are so great, numbers of 
unexplained false positives have been reported by 
physicians. This means that the signal variation, 
whether in amplitude or latency, showed a value that 
would suggest a neurological dysfunction was present 
when in fact it was not. It is suspected that the 
variability in these measurements is highly due to the 
use of ensemble averaging (EA) as a noise reduction 
technique. Since the signals have very low SNRs, 
numerous signals must be acquired and averaged 
before an adequate signal can be obtained for 
diagnoses. If the signal at the recording site is not 
deterministic, a smearing effect can be introduced 
where the averaged signal does not give a good 
estimate of a single EP, but an attenuated and 
distorted version. Losing this single EP information is 
of great concern in areas attempting to show that the 
trial-to-trial variability in an EP waveform may be a 
sufficient clinical marker [6, 7]. An adequate measure 
of a single trial evoked potential is needed. To do this 
effectively, existing noise must be reduced on a single 



trial basis. This means an alternative to EA must be 
used. 

METHOD 

In order to investigate and quantify the noise 
reduction abilities of the genetic algorithm tool, input 
signals of known SNR must be used. Unfortunately, 
data gathered from experimental procedures is 
contaminated with various unknown noise signals. To 
combat this, the existing EP simulator will be used. 
Noiseless signals will be generated and contaminated 
with different amounts of band-limited (5 kHz) additive 
noise. This simulates the effects of noise generated by 
both external equipment and other biological sources. 
To create signals of varying SNR the following 
definition will be used:  

𝑆𝑁𝑅 =
𝑃𝑆𝐼𝐺

𝜎𝑁
2    (1) 

PSIG: Signal Power 

σN
2
: Noise Variance 

Once the test signals are generated, each will be 
run separately through the matching tool, SEPfit. 
Upon completion of each trial, output SNR measures 
will be taken along with a measure of distortion. The 
distortion measure will represent the mean squared 
error between the algorithm’s output (the matched 
signal) and the ideal noiseless output. The definition of 
distortion is as follows: 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 100 ×
𝑚𝑒𝑎𝑛 ([𝑆𝑀𝐴𝑇𝐶𝐻𝐸𝐷 − 𝑆𝐷𝐸𝑆𝐼𝑅𝐸𝐷 ]2)

𝑚𝑒𝑎𝑛 (𝑆𝐷𝐸𝑆𝐼𝑅𝐸𝐷
2 )

%  (2) 

SMATCHED: The matched output signal of the genetic algorithm 

SDESIRED: The ideal noiseless output 

Once values of output SNR and distortion are 
calculated, the sIQ will also be calculated. This metric, 
shown below, represents the ratio between the output 
SNR and the distortion. 

𝑠𝐼𝑄 =
𝑆𝑁𝑅𝑂𝑈𝑇

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝑂𝑈𝑇
  (3) 

SNROUT: SNR of resulting output signal 

DistortionOUT: Distortion of resulting output signal 

The rationale behind this new metric is to take into 
account the deleterious effect that signal distortion can 
have on the clinical interpretation of the signal.  For 
example, EA will distort the signal if there are trial-to-
trial variations, however the overall SNR will be 
enhanced. It is suggested that a high sIQ may be a 
better measure of noise reduction abilities than a high 
output SNR. A high sIQ represents an ability to 
effectively reduce noise without distorting the 
underlying signal. It should be noted that much like the 
distortion measure this metric cannot be calculated 

with experimental recordings as the desired signal is 
unknown. It is simply a test measure that can be used 
to evaluate new single trial noise reduction techniques 
with simulated signals. 

RESULTS 

Using the EP simulator, noiseless bipolar test 
signals were generated to simulate experimental 
recordings acquired along the median nerve. 
Randomly generated band-limited noise was added to 
each signal in order to vary the test set SNR values 
from approximately 0.2 to 20. Each signal was then 
run through SEPfit for 5000 iterations/generations. 
This was done multiple times for each signal in the test 
set. Figure 1 shows a sample output comparing an 
input signal of unity SNR to both the output of SEPfit 
and the desired noiseless signal. Here, the output 
signal shows an improved SNR (~9) and distortion 
measure of ~12% (sIQ ≈ 0.75). 

 
Figure 1: A sample output comparing an input signal of 
unity SNR (top) to the SEPfit output (middle) and the 
desired noiseless signal (bottom). 

Once all signals in the test set were matched 
performance metrics were calculated. Figure 2 shows 
the comparison between input SNR and output SNR. 
Here it can be seen that the output signal benefits 
greatly from the matching procedure along the whole 
test set. The increasing variability in the SNR 
improvement at each ends of the SNR input values 
can be explained by the tools incapability of improving 
both significantly high (greater than 15) and 
significantly low (less than 0.5) SNR signals. It is also 
suggested that output SNR variability with a low SNR 
input may be reduced with an increase in the GA 
generations of the SEPfit routine. 

 



 

Figure 2: Comparison of input SNR to output SNR. 
Maximum and minimum envelops of the data are also 
highlighted. 

To coincide with Figure 2, a comparison between 
input and output distortion is shown in Figure 3. 

 
Figure 3: Comparison of input distortion to output 
distortion.  

As shown above, as the input distortion ranges 
from 0 to 150, due to the additive noise, there is a 
significant improvement in output distortion. Beyond 
input distortion of 150 the output distortion seems to 
become somewhat constant. This can be linked to a 
limitation of the GA matching tool. The GA operates by 
manipulating input parameters to a physiological 
based EP simulator. Because it is possible to have a 
priori knowledge of some physiological parameters, 
limitations can be set within the GA interface. Here, 
simulated signals represented recordings taken from 
the median nerve. Since the number of velocities used 
to create the signal is representative of the number of 
active fibres within a nerve, a maximum number of 
possible velocities was set. It is speculated that at 
input distortion levels greater than 150 the matched 
signal is reaching its maximum possible output 

distortion. It should be noted that these input distortion 
levels are characteristic of input SNR levels below 0.5. 

A comparison of input SNR and sIQ is shown in 
Figure 4. Results are as expected as we see a 
significant improvement to sIQ as the input SNR 
increases. Slight variability in the sIQ at each end of 
the input SNR values can be linked to the variability 
discussed for the output SNR results.  

Although there are no defined values for adequate 
SNR or distortion measures, the author suggests that 
SNR values greater than 5 and distortion values less 
than 5% may be considered adequate for clinical 
interpretation. This suggests that a sIQ value greater 
than unity represents a significant improvement. From 
Figure 4 it is shown that using this method such an sIQ 
can be achieved at input SNR values greater than 
unity. 

 

Figure 4: Comparison of input SNR to sIQ. Maximum 
and minimum envelops of the data are also 
highlighted. 

A final investigation to quantify the matching tool’s 
performance led to the study of how the sIQ varies 
with the number of GA generations. Shown in Figure 
5, the sIQ has a relatively high peak value after 
completing only 250 generations. This value however, 
is misleading. After examining the results found in 
Figure 5 it was discovered that at iterations less than 
~1000 the signal distortion was significantly high 
(greater than 25%). This implies that although the sIQ 
is high, the signal has not been adequately matched. 
This suggests that the GA tool must stabilize before 
the sIQ is measured. Further investigation is needed to 
fully comprehend how and why the sIQ is affected by 
the number of GA generations. Finally, it was noted 
that the time taken to complete 5000 GA generations 
on a standard personal computer was approximately 
90 minutes. 



 
Figure 5: sIQ improvement with GA iterations (input 
SNR ≈ 1) 

CONCLUSION 

Using a test set of input signals with varying SNR, it 
was shown that the introduced matching tool, SEPfit, 
can significantly increase output SNR while reducing 
the effects of distortion. Input SNR levels with values 
greater than 5 were shown to have the best 
performance. Other factors such as the limitations of 
the matching tool were also discussed. These 
limitations included the necessary number of iterations 
needed before a reliable signal could be reached and 
how using a priori knowledge of the number of active 
nerve fibres can set a maximum possible output 
distortion for the output signal. 

FUTURE WORK 

The overall aim of this research is to develop an 
effective tool for reducing noise in single trial surface 
recorded evoked potentials. Although this study has 
shown major steps towards this goal, more work is still 
needed.  

As discussed earlier, the time taken to run this 
procedure may exceed 1 hour. Although this may not 
be detrimental to the proposed method, as it is all 
post-processing, analysis of the computational load to 
improve the associated run-time is needed. 

In addition to run-time issues, comparisons with 
existing noise reduction methods are also needed. 
Most importantly it is necessary to compare the 
proposed method with EA. Again, common 
performance metrics would need to be explored. 
Values of sIQ would also be of particular interest. 
Other noise reduction methods that may also warrant 
an investigation are both wavelet and Fourier analysis 
[8]. This is due to both methods being developed on 
the same decomposition techniques as GA tool. 

Finally, as mentioned previously, further 
investigation into how and why the sIQ is affected by 
the number of GA generations is needed. 
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