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INTRODUCTION 

In neuroimaging, spatial normalization refers to 
spatially transforming different brain MR scans to a 
standard space for purposes of atlas alignment, inter-
subject averaging, or characterization of anatomical 
structures. In fMRI analyses, time series from different 
subjects are concatenated together under the 
assumption that there is a perfect correspondence at 
the voxel level across subjects after normalization. 
Often data are spatially smoothed to make this 
assumption less rigid, but this degrades the spatial 
resolution. Standard low dimensional methods for 
spatial normalization can result in significant mis-
registration, particularly for smaller structures such as 
those of the basal ganglia. The aim of this paper is to 
rigorously assess the residual anatomical variability 
(RAV) in basal ganglia structures after standard spatial 
normalization. This has profound implications for group 
studies in populations where the basal ganglia are 
being examined, e.g. Parkinson’s Disease. 

We studied the extent of RAV in basal ganglia 
structures in 27 T1-weighted brain scans after spatial 
normalization by different methods. Specifically, we 
assessed the normalization performance of 
Freesurfer[1], Statistical Parametric Mapping (SPM)[2], 
and Large Deformation Diffeomorphic Metric Mapping 
(LDDMM)[3]. We specifically concentrated on basal 
ganglia structures in each hemisphere were 
considered. As expected, smaller ROIs had increased 
RAV when computed over all subject pairs with 
different group sizes and registration methods. The 
LDDMM method had the lowest RAV of the three 
methods, but was the most computationally intensive. 
This result has major implications for group fMRI 
studies that utilize spatial normalization as a standard 
pre-processing method, and supports the use of fMRI 
ROI analysis methods that compute significance in 
each subject’s native space, especially when basal 
ganglia structures are involved. 

The rest of the paper is organized as follows. In 
the second section, details of the data and methods 
are introduced. In the third section, data processing 
results with the different methods are presented and 

discussed. Finally in the fourth section the experiment 
results are concluded. 

METHODS 

We assessed RAV in this paper with the following 
three steps: 
1) Data acquisition: We acquired 27 T1-weighted 

brain MR images from a 3 Tesla scanner (Philips 
Achieva 3.0T; Philips Medical Systems, 
Netherlands), with 170 slices axially parallel to the 
AC-PC plane. The subject cohort consists of two 
groups: 14 Parkinson's Disease (PD) subjects and 
13 age-matched control subjects with no known 
neurological or psychiatric conditions. Four basal 
ganglia ROIs (putamen, caudate, thalamus, 
globus pallidus) in each hemisphere were outlined 
manually by a trained research assistant using 
Amira software (Amira 3D Visualization and 
Volume Modeling V.3.1.1.), as shown in Figure 1. 

2) Spatial Normalization: Three different registration 
tools were used to normalize the ROIs of each 
subject. A) The 12-parameter affine registration to 
the Talairach space[5] implemented in Freesurfer 
work flow (autorecon1). B) SPM's default spatial 
normalise module, including affine and 7x8x7 
nonlinear basis functions. C) Freesurfer-initialized 
LDDMM (FS+LDDMM) registration[4], with the 
deformation fields applied to the ROIs of each 
subject. 

3) Variability Measurement: We used the Dice 
similarity coefficients (DSC) to measure the 
overlap percentage of normalized ROIs under 
template space. The DSC is defined as: 

 

(1)

where Si, (i=1,2…n) are ROIs in this paper. V(Si) is 
the number of non-zero voxels of of Si (i.e. the 
volume of ROI Si), and n is the number of subjects 
to overlay, which we will refer to as the group size. 
When n=2, DSC(A,B)=2V(A B)/[V(A)+V(B)], a 
measure commonly used to assess segmentation 
similarity, sometimes referred to as the similarity 
index (SI), Kappa coefficient, or mean overlap. For 



complete overlap between two segmentations, 
DSC=1, and for no overlap, DSC=0. We computed 
the average DSC of normalized ROIs using Nieto-
Castanon’s scheme[6]. Average DSCs were 
computed over all possible subject combinations. 
 

RESULTS 

The average DSCs of ROIs after three different 
spatial normalization methods are shown in Figure 2. 
For subject group size=2 the DSCs (average ± 
standard deviation) are shown in Table 1. In all the 
experiments average DSC generally decreases as 
subject group size increases. The average DSC with 
the FS+LDDMM registration was less than the other 
two methods. Among the 4 basal ganglia ROIs, the 
average DSCs of the globus pallidi was significantly 
lower than the other 3 ROIs. This is mainly because 
the number of voxels contained within the globus 
pallidus tends to be smaller than other ROIs, and 
therefore has a higher proportion of boundary voxels. 

To estimate the manual segmentation variability of 
the ROIs, one subject from the control group was 
manually segmented 5 times by the same person. The 
DSCs (average ± standard deviation, subject group 
size=2) for the four ROIs are shown in Table 1. The 
high average DSCs and low standard deviation 
indicates that the manual segmentation is generally 
consistent, and therefore the RAV mainly arises from 
misregistrations after the spatial normalization process. 

CONCLUSION 

Spatial normalization is extensively used for atlas 
alignment, inter-subject averaging, and anatomical 
characterization, and has been integrated into many 
MR study tools. However, evidence in this paper 
indicates that for low dimensional registration methods, 
misregistration, particularly as the group sizes 
increase, is a particular problem for basal ganglia 
structures. A high-dimensional registration method 
such as LDDMM is necessary to reduce the 
anatomical variability before further processing. 

Compared to the recent papers quantifying RAV 
of different registration techniques[7,8,9], this paper 
contains the following novel work. 
1) We focused on the RAV of four PD-related basal 

ganglia structures after whole brain spatial 
normalization. 

2) We quantified the influence of subject group size 
on RAV of the subjects after spatial normalization. 
Other factors with potential influences to RAV, 
such as consistency of ROI segmentation and 
neurological or psychiatric conditions of subjects 

were also studied. 
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Figure 1: Outlines of ROIs on the structural image. The 3x3 image 

array on the top is sagittal view, the second array from top is coronal 
view, the one below that is transverse view. One the bottom are the 

colorfully rendered ROI surfaces with differe, red-caudate, blue- 
putamen, green-thalamus and pink-globus-pallidus 

 

 

 

 

 

 

 
Figure 2: Average DSCs with different spatial normalization 

methods 
. 



Table 1: DSCs (average ± standard deviation) with subject group 
size=2 

ROI Manual FS+LDDMM FS SPM 

Left 
Caudate 0.87±0.02 0.7±0.03 0.55±0.05 0.56±0.06

Right 
Caudate 0.85±0.02 0.69±0.03 0.59±0.05 0.57±0.05

Left 
Putamen 0.84±0.03 0.67±0.04 0.60±0.07 0.59±0.07

Right 
Putamen 0.86±0.03 0.73±0.04 0.68±0.07 0.64±0.07

Left 
Thalamus 0.87±0.2 0.66±0.03 0.64±0.06 0.61±0.06

Right 
Thalamus 0.85±0.02 0.66±0.02 0.64±0.05 0.62±0.06

Left 
Pallidum 0.69±0.01 0.21±0.01 0.24±0.05 0.20±0.04

Right 
Pallidum 0.55±0.01 0.27±0.02 0.32±0.04 0.27±0.04
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