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Figure 2. Sample slice profile in brain, mostly from white
matter: The mean signal had been set to zero. Standard devia-
tion was σb= 0.2.
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1 INTRODUCTION

Endovascular therapy is used to treat vascular diseases like
atherosclerosis. In endovascular therapy using magnetic
resonance (MR), an image is typically acquired from a
thick-slice of tissue that potentially includes a thin endovas-
cular catheter. Conventional imaging methods generally
provide low contrast between the catheter and the back-
ground tissue (Fig.1a). To improve catheter conspicuity,
background tissue suppression methods are used. For exam-
ple, we have recently proposed a novel tissue suppression
method using Hadamard radio frequency pulses (Fig.1b) [1].

Figure 1. 4-French catheter (diameter Dc = 1.35 mm) in a uniform
yogurt phantom (a) without suppression, and (b) with background
suppression (HD method) [1].

Homogeneous phantoms (Fig.1) or simulated homoge-
neous backgrounds are useful for evaluating performance of
different suppression techniques; however, in practice, tis-
sue texture is heterogeneous. For better evaluation of sup-
pression techniques, a heterogeneous tissue model that
mimics representative tissue is necessary. In this paper, we
propose a parametric stochastic heterogeneous model whose
characteristics like variance, frequency and smoothness of
pixel intensities can be varied to resemble real tissue. In this
work, we have selected brain parenchyma as our real (or
control) tissue and have developed parametric stochastic
heterogeneous models that mimic its texture. The model,
however, could be extended to mimic any other real tissue.

Our approach generates varied modeled tissues for a
range of parameters. These tissues and real tissue are first
quantified using texture analysis (TA). Then, we statistically

assess the modeled tissues with the actual tissue to identify
those textures that are most similar to control tissue.

Texture analysis is commonly used to provide quantita-
tive measure of image texture based on statistical or syntac-
tic features of the tissue. TA has been successfully used in a
variety of areas, including separating cirrhotic liver patients
from healthy subjects [2]. TA has also been used to quanti-
tatively compare performance of MR scanners [3]. TA ap-
proaches can be based on statistical features; utilizing in-
formation based on the histogram, the run-length matrix and
the co-occurrence matrices. Another approach for TA is
syntactic feature evaluation that relies on placement rules
governing pixel intensities in the given data. In this paper,
we have used statistical TA to quantitatively determine tex-
tural features in modeled and actual tissues.

The objectives of this paper are three fold: (1) to de-
velop a parametric stochastic heterogeneous tissue model,
(2) to obtain statistical TA features from the modeled tissues
for a range of parameters, and (3) to suggest model tissue
parameters which generate tissues that are most representa-
tive of (or similar to) brain parenchyma. Further, we have
evaluated two suppression methods namely, the Hadamard
(HD) and more widely used projection dephaser (PD) [4]
methods on these model textures, and compared the result-
ing background intensity with a simulated homogeneous
background and representative background tissues.

(a) no suppression (b) Hadamard



2 METHODS

2.1 Brain parenchyma (Control tissue)
3D MR images of brain parenchyma were collected on a 3 T
scanner (Signa; General Electric Medical Systems,
Waukesha, WI) using a fast T1-weighted spoiled gradient-
echo (SPGR) sequence with 4 signal averages (NEX), a
matrix size of 256 × 128 × 256, a FOV of 240 mm × 240
mm, and a slab thickness of 102 mm. A high z-resolution
(0.4 mm) was acquired to obtain sufficient samples were
obtained from brain parenchyma in the anterior-posterior
direction. To avoid edge effects, only the middle 126 slices
(or 50.4 mm) were used. Twenty-five profiles were obtained
randomly from regions of mainly white matter, as this
would be the tissue excited in many endovascular applica-
tions in the head  (Fig. 2 shows one such profile). The mean
and standard deviation of the signal intensities along the
profile were measured. The standard deviation was also
measured from a region with no signal (i.e., in air sur-
rounding the head) and used to estimate image noise.
2.2 Stochastic heterogeneous background model
In order to simulate tissue texture, we assumed that real
tissue was comprised of a number of spatially discrete tissue
subtypes. Changes in tissue texture (i.e., the extent of each
tissue subtype) were assumed to be Poisson-distributed;
hence the distance (or subtype extent) between changes is
exponentially-distributed, with a mean extent of λ. Intui-
tively, decreasing λ has the effect of increasing the number
of tissue sub-types and thus the frequency of signal varia-
tions in the model. The intensity of each tissue sub-type was
assumed to be normally distributed with zero mean and a
variance of σb

2. A moving average (MA) filter (of length Nf)
was then applied to smooth the transitions between tissue
subtypes. Finally, to account for system noise, a zero-mean,
normally distributed signal (variance σn

2) was added.

Forty-eight modeled profiles were constructed for each
combination of λ, σb, and Nf. The selected λ’s were {1/10,
1/50, 1/100, 1/126}, σb’s were {0.1, 0.2, 0.3}, and Nf’s were
{1, 2, 3, 4}. The system noise was held constant at σn =
0.03. Subroutines to generate modeled profiles were imple-
mented in commercial simulation software (Matlab; Math-
works, Natick, MA). Modeled profiles for each parameter
combination were generated 450 times.
2.3 Feature extraction
Features for each of the forty-eight modeled textures and the
control tissue (i.e., actual tissue) were obtained as follows:
profiles from the modeled and control tissues were normal-
ized to have the same mean. Statistical features based on
gray-tone spatial dependence (GSD) matrix [5], run-length
matrix (RM) [6] were then calculated for each profile.

The GSD matrix, denoted by p(i,j), contains texture in-
formation specified as the relative probability p, by which
two neighbouring pixels, separated by distance d occur in

the data - one with a gray value i and the other with a gray
value j. The GSD matrix was calculated for d = 1. The RM,
denoted by RM(i,j), quantifies texture by determining the
relative frequencies with which neighboring pixels of run-
length j have the gray level i. A “run” is a set of consecutive
pixels with the same gray level value. The run-length is the
number of pixels in the run.

The nine features examined in this study are outlined,
along with the definitions for the three features that exhib-
ited highest F-statistic, as explained in data analysis section.
2.3.1 GSD matrix based features
Entropy is defined as

where i and j are indexes into the gray-tone spatial depend-
ence probability matrix p, and Ng is the maximum number
of gray levels [5]. Entropy measures the complexity or ran-
domness between adjacent pixel pairs in the slice profile.
For example, the entropy of models with large λ will nor-
mally have lower entropy.
Correlation (ρ ) [5] which gives a measure of linear depend-
encies in the slice profile was computed. In addition, the
angular second moment (ASM) or measure of homogeneity
and sum of squares (SS) [5] or measure of variance of GSD
matrix were computed.
2.3.2 Run-length matrix based features
Short run emphasis (SRE) inverse moment is defined as:

where Nr is the number of run-lengths [6] and R is:

I n  SRE, runs with smaller run-lengths are given higher
weighting. Generally models with small λ and Nf will have
higher SRE.
Run percentage (Φ) is defined as:

and measures the fraction of matrix in run-lengths. The
value of Φ will be higher for more heterogeneous profiles.

Run-length non-uniformity (RLN), which is a measure of
periodicity in the profile, was computed. Models con-
structed with small λ will generally be more periodic and,
thus, have a higher RLN. In addition to the above, long run
emphasis (LRE), inverse moment and gray-level non-
uniformity (GLN) were computed [6]. In computing LRE,
higher weighting is given to longer run-length gray-levels
and the GLN is a measure of gray-level non-uniformity.
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Figure 3. Tissue intensity for models when (a,b) λ is changed
from 1/10 to 1/100; (c,d) σb is changed from 0.2 to 0.3, Nf  is
changed from 2 to 3 and λ is changed from 1/50 to 1/100.

σb=0.2, Nf=2, λ=1/10 σb=0.2, Nf=2, λ=1/100

σb=0.2, Nf=2, λ=1/50 σb=0.3, Nf=3, λ=1/100

2.4 Data Analysis
For each of the nine proposed features, one-way analysis of
variance (ANOVA) and Dunnett’s test were performed
(SPSS; SPSS Inc, Chicago, IL) between the forty-eight
modeled tissues and the control tissue. The ANOVA F-
statistic was recorded for each feature. For each feature with
statistically significant changes (found by ANOVA, p <
0.05), Dunnett’s test was used to find statistical significance
between each of the forty-eight modeled tissues and the
control tissue. Only modeled tissues that had non-significant
features (found by Dunnett’s test, p > 0.05) were considered
for further assessment. Features with a large F-statistic and
the smallest number of modeled-control tissue pairs with p
> 0.05 (via Dunnett’s test) formed the set of most discrimi-
nating features (MDFs).

Simulations using both HD and PD background sup-
pression methods were conducted to demonstrate the appli-
cation of stochastic heterogeneous modeling using the tissue
models identified by the MDFs as being similar to brain
parenchyma. The background signal, Sb, was obtained for
both HD and PD methods as follows: for the HD stochastic
method, the heterogeneous slice profiles were multiplied by
a Hadamard slice-excitation profile [1]; For the PD method,
modeled slice profiles were multiplied by a rectangular
slice-excitation profile and a phase twist of 2! rad was ap-
plied across each profile. Sb was determined by summing
individual intensities along each profile.

3 RESULTS

The profiles in brain parenchyma had an average signal
standard deviation of 20% and an average noise standard
deviation of 3% relative to the mean signal. As shown in
Figs 3a and 3b, decreasing λ increased the frequency of
tissue changes. Decreasing Nf also increases the frequency
of modeled signal variations. The effect of increasing σb or
σn was to increase the overall variance in the model tissues.
The parameters (λ, σb, and Nf) were found to be inter-related
in how they affected the texture of the modeled tissues. As
shown in Figs 3c and 3d, modeled tissues constructed with
different parameters had similar textures.

The nine previously described texture features were
computed for each modeled tissue, as well as for the control
tissue profiles. Table 1 lists the ANOVA F-statistic and the
number of non-significant modeled textures for each fea-
ture. A large F-statistic signifies large between-tissue vari-
ance, and a small number of modeled textures with non-
significant p-value suggests that a feature is capable of dif-
ferentiating modeled tissues that are most similar from those
that are dissimilar to the control tissue. Each of the MDFs
identified several modeled tissues as being similar to control

tissue. Entropy (H), correlation (ρ), SRE, RLN and run per-
centage (Φ) were identified as MDFs.

Of the forty-eight modeled tissues, those that had non-
significant p-values for three (good models), four (better
models) and five (best models) of the most discriminating
features are listed in Table 2. The model {σb, Nf, λ} = {0.3,
4, 1/126} was selected by all five MDFs, suggesting this to
be the most similar to control tissue. The {0.2, 2, 100} and
{0.2, 2, 1/126} models were selected by four of five MDFs.

Background signal Sb, was calculated for the most tis-
sue-like models (Table 2), for a homogeneous tissue model
and for the control tissue. The Sb obtained from modeled
tissue was smaller than Sb of control tissue; however, higher
than Sb of homogeneous tissue model.

Table 1. List of features evaluated in this study. Features with a
large F-statistic and low number of non-significant features
formed the set of most discriminating feature (MDFs; highlighted).

Feature
F-statistic
(ANOVA)

Number of non-
significant models

(Dunnet’s test)

SRE 2192 7

RLN 1144 8

Run percentage, Φ 1707 8

Correlation, ρ 1123 8

Entropy, H 2957 11

SS 975 13

LRE 607 20

ASM 1076 26

GLN 328 34



4 DISCUSSION AND CONCLUSION

We have proposed and evaluated a parametric stochastic
heterogeneous tissue model to mimic some of the textural
properties of actual tissue. A statistical approach for TA was
performed to quantify the features of modeled and actual
tissue profiles. We used ANOVA followed by Dunnett’s
test to determine modeled tissues that are most similar to
selected brain parenchyma. Six of the forty-eight modeled
tissues were found to be the most similar to control tissue.
All of these modeled tissues were chosen based on features
with very high F-statistic. A large F-statistic indicates the
ability of a particular feature to differentiate similar from
dissimilar modeled tissues versus the control tissue. Al-
though, previous studies [7] have indicated that RM-based
features are less effective for image texture analysis, we
obtained statistical significance from RM based features
(i.e., SRE, RLN and Φ).

The key texture characteristics in tissue are the extent
and intensity of each constituent tissue subtype. We have
modeled these variations with four parameters: σb, σn, λ and
Nf. The parameters σb  and σn were used to change the stan-
dard deviation of pixel intensities in a tissue subtype, λ was
used to vary the extent of tissue subtype in a stochastic
manner and Nf was used to smooth the edges between tissue
sub-types. We assumed that the intensity of the tissue sub-
types was normally-distributed - based on the measured
distribution in control tissue. Our assumption that the extent
of the tissue subtypes was exponentially-distributed is
analogous to common practice in communication systems

where the time between two events is modeled as an expo-
nential random variable.

To ensure determination of a valid tissue model, the
range of model parameters had to be carefully selected.
Modeled textures were constructed for σb both smaller and
larger than the observed variance in the control tissue (Fig
2). The range of λ was selected to include both lower and
higher frequencies than found in the control tissue. Investi-
gation of all models, showed that because of the inter-
relationship existing between parameters, models within
certain ranges of parameter had similar textures.

The GSD matrix and RM-based features have been
used to classify 2D image textures [2,3,7]. We have used
these features to compare 1D-modeled tissues with the con-
trol tissue. For 2D image texture analysis, the GSD-matrix
and RM-based features are defined at angles of 0°, 45°, 90°
and 135° [5,6]. With 1D slice profiles, each pixel has, at
most, two neighbours. Hence, the GSD matrix and RM
based features were computed in one direction only. Each of
the features used in this study characterizes structures such
as periodicity, linearity, complexity or frequency variations
of pixel intensities in the slice profile. Other features based
on the co-occurrence matrix might provide additional in-
formation on modeled texture [5] and perhaps allow for
better texture characterization. In our method, data were
considered from MDFs only. Combining all features with
appropriate weights is an alternative approach.

The best six heterogeneous tissue models were success-
fully applied to assess the performance of HD and PD back-
ground suppression techniques in endovascular MR. The
average Sb obtained from the six modeled textures was in-
termediate to that obtained from homogeneous tissue model
and control tissue for HD and PD methods (Table 2). This
demonstrates the suitability of these tissue models to gener-
ate textures that more accurately mimic tissue.

We have shown that the stochastic heterogeneous tissue
models can mimic actual tissue and have tested the applica-
bility of this model in assessing background suppression
methods. Our model can be extended to include more com-
plex models where portions of the modeled profile have
different parameters. Such would be the situation when the
excited slab includes multiple different tissues.
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Table 2. List of modeled textures that had a majority of the six MDFs.
Calculated background signal (Sb) for control and homogenous-
modeled tissues are also shown.

Modeled
parameters

Sb, arb. units
mean ± std dev

σb Nf λ

Supported
MDFs

HD PD

Control Tissue N/A 6.9 ± 5.0 15.7 ± 3.5

Homogenous
Tissue Model

N/A 0.5 ± 1.9 9.74 ± 1.4

0.3 4 1/126 SRE,Φ, RLN,
ρ, H

2.1 ± 1.6 10.9 ± 2.2

0.2 2 1/100 SRE, Φ, ρ, H 1.6 ± 1.3 10.2 ± 1.8

0.2 2 1/126 SRE, Φ, ρ, H 1.4 ± 1.0 10.0 ± 1.6

0.1 1 1/126 SRE, Φ, H 0.7 ± 0.5 9.8 ± 0.8

0.2 3 1/126 SRE, Φ, H 1.4 ± 1.1 10.4 ± 1.5

0.3 1 1/50 SRE, Φ, H 3.9 ± 3.1 11.3 ± 4.1


