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1. INTRODUCTION

Very large systems of linear equations can only be
solved by iterative methods. The most popular of which
(the Gauss-Seidel and Jacobi methods) do not always
converge. By considering each equation of a linear
system as a convex set we have used the method of
POCS [1] to derive an iterative method that always
converges. It turned out that this method is identical to
ART (also known as the Kaczmarz method) which was
derived by a different approach [2][3] and is largely
used in computerized tomography (CT). Having shown
that ART can be derived by the method of POCS, addi-
tional convex constraints can be used as well in CT
such as the constraints of positivity and of compact
support (i.e., zero value outside of a certain region). In
the case of underdetermined systems, the more con-
straints are introduced, the better will be the approxi-
mation. The solution will also converge to the point
belonging the intersection of all convex sets which is
the closest to the starting solution. The fact that ART is
a particular case of POCS is, as far as we know, not
exploited by CT community where additional con-
straints are considered to introduce a bias in ART and
little attention is given to the initial solution.

2. DERIVING ART BY POCS

Considering the 2D case in the x1 and x2 plane, we
have two linear equations a11x1 + a12x2 = y1 and a21x1

+ a22x2 = y2. From point (x1
k, x2

k) we want to find its

closest point x1
k+1and x2

k+1 on the line a11x1+ ax12=

y1. That is we want to minimize the distance:

  (1)

subject to the constraint

(2)
    By the method of Lagrange multipliers we have:

  and (3)

 and by eliminating the multiplier :

 . (4)

which applied to (1) and (2) gives:

  (5)

  (6)

This point becomes the new point (x1
k, x2

k) and we

now find its closest point on the second equation by the
same method:

  (7)

  (8)

Fig. 1. Convergence of ART.

As illustrated in Fig. 1 this mechanism of alternate
orthogonal projections is repeated until convergence to
the solution. In this figure * indicates the initial solution
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and the two lines are the linear equations whose solu-
tion is their intersection. An iteration is completed after
projecting onto each convex sets (after having com-
puted equations 5 to 8, in this example). For j
unknowns and i equations the general equation
becomes:

(9)

which is ART [2][3].

The MATLAB code for solving eq. (9) for any sys-
tem of the form Ax = y or:

(10)

for each i by eq. (9) is given here:

If the system is determined, the additional con-
straints can speed the convergence. If not they are
necessary to limit the solution space. 11 convex con-
straints can be found in [1]. Others can be derived by
the method of Lagrange multipliers after having proven
that they each form a convex set [1][4]. The positivity
and compact support constraints are realized by setting
to zero the negative values of x and the values of x out-
side the support [1].

3. NUMERICAL RESULTS

Algorithm (9) has been tested on the 128*128 pixel
Shepp-Logan phantom (Fig. 2). The attenuation coeffi-
cients were computed for each point in each orientation
by an exponential function taking into account the dis-
tance between a point and the limit of the phantom in
the direction of the gamma camera (Fig. 3).

Fig. 2. The Shepp-Logan phantom

Fig. 3. Attenuation map at 45 degree.

The Radon transforms (185 pixels each) of this
phantom were computed in 32 regular steps from 0 to
180 degrees. A has thus 185x32 lines and 128x128
columns, x has 128*128 lines and has y 185*32 lines.
This system is too large to be solved by the program
PocsLs. Eq. (9) was thus evaluated as follows starting
from the first orientation:

• The attenuation map for orientation  is computed 
and multiplied point by point by the phantom.

• Three Radon transforms are computed for orienta-

tion : R1 for the image computed in the preced-
ing step, R2 for the phantom and R3 for the map to 
the power of two.

• The values of (R1 - R2)/R3 are backprojected for 

orientation .
• The result is multiplied point by point by the attenu-

ation map in  and each pixel is updated by sub-
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    a2 = (sum((A.^2)'))'; % ' transpose
    dim = size(A);
    nx = dim(2); % n of unknowns
    ne = dim(1); % n of equations
    x = ones(nx, 1); % Initial solution
    for i = 1:niter
        for j = 1:ne
            C = (A(j,:)*x-y(j))/a2(j);
            x = x - A(j,:)'*C;
        end
%       x = (x>0).*x; Positivity constraint.
%       Other convex constraints.
    end
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tracting this from its value at the preceding 
iteration.

• The positivity constraint is applied.(The compact 
support constraint is applied by the preceding 
step).

• Increase  and restart from the first step.

These six steps constitute an iteration. Reconstruc-
tion with 10 iterations is shown if Fig. 4.

Fig. 4. Reconstruction of the phantom by ART

The image percent error is computed at each itera-
tion by:

where  is the euclidian norm of x, and is plotted
in Fig. 5.

Fig. 5. Image percent error vs. iterations.
Continuous line: ART; +: MLEM; o: OSEM

 At iteration 10 the error is 12.72%. This is a quite
good estimate of the solution considering that we have
a system of 16,364 unknowns (128x128) with only
5,920 (185*32) equations. That is with only 35.13% of

the necessary number of equations to obtain the exact
solution.

In Fig. 4 ART is also compared to the reconstruc-
tions obtained by MLEM [5] and its accelerated version
OSEM (ordered subsets expectation maximization)
with eight subsets [6]. As generally reported one itera-
tion of OSEM is approximately equivalent to ten itera-
tions of MLEM. The Fourier backprojections (FBP)
method gives an error of 39.84% with an uniform atten-
uation.

Real data were also obtained with a clinical SPECT
system equipped with an attenuation correction option.
Reconstructions from the Jaszczack heart phantom
and from patients data were obtained with ART and
OSEM using ten iterations. Generally after 3 iterations
the reconstructed images by both methods were barely
discernible from each other by eye inspection. Our
reconstructions were also very similar to those of the
commercial system which are based on the OSEM
approach like most other systems in the industry.

5. COMPARISON OF ART WITH MLEM-OSEM

The MLEM algorithm consists in solving:

(11)

where the  are normalized for each j:

(12)

Fig. 6. Convergence of MLEM with 100 iterations.The 
point in O is reached at the first iteration.

In [7] MLEM (eq. (11)) was derived by POCS by
minimizing the Kullback-Leibler (KL) pseudo-distance

between yi and  while minimizing the same dis-

tance between  and yi gives the MART (multi-
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plicative ART) algorithm. The convergence of MLEN for
a 2x2 system is shown in Fig. 6. For large underdeter-

mined systems if  is the closest to is still an open
question [7].

6. CONCLUSION

The ART algorithm can be derived easily and rap-
idly by the method of POCS. Using more conventional
mathematical methods it takes many pages to develop
ART [2][3]. Since ART is POCS, additional convex con-
straints can be added. The initial solution can also influ-
ence the reconstruction because ART converges to the
solution respecting eq. (10) which is the closest to it.
Starting from an uniform image, for example, will maxi-
mize the entropy.

The POCS method is also interesting as a uniform
framework to develop and compare CT algorithms at a
more abstract level. Knowing that ART, MLEM and
MART can all be derived by POCS by minimizing the
euclidian distance, the KL distance between yi and

, and the KL distance between  and yi

respectively is of theoretical and practical interests.
More generally, Eq. (9), because of its guaranteed

convergence, should be considered as the method for
solving linear system in lieu of the Gauss-Seidel or
Jacobi methods presented in almost all textbooks on
numerical or applied mathematics. It can also be used
with constraints and proper starting solution to solve
any underdetermined linear systems of equations
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