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Abstract− A Gaussian mixture model (GMM) based 
classification scheme is proposed in this paper to 
perform multiple limb motion discrimination using 
continuous myoelectric signals (MES) from limb 
muscles. The system is optimized with respect to the 
feature set, classifier and post-end processing of the 
decisions through comprehensive experimentation. The 
experiments examine the effects of various feature sets 
including the time-domain (TD) features and the 
autoregressive (AR) features with root mean square 
value (RMS), and the effect of the majority vote (MV) in 
post-processing on the classification performance. The 
averaged GMM classification performance is compared 
with that of three other motion techniques (a linear 
discriminant analysis (LDA), a linear perceptron (LP) 
neural network and a multilayer perceptron (MLP) neural 
network). The Gaussian mixture motion model achieves 
96.91% classification accuracy using a combination of 
AR with RMS and TD (AR+RMS+TD) feature set for a six 
class problem. It has been demonstrated that this GMM-
based limb motion classification scheme has superior 
classification accuracy and results in a robust method 
of motion classification. 
 

I. INTRODUCTION 
 

Electrically powered prostheses with myoelectric 
control have been found to have many advantages 
over other types of prostheses [2], mostly due to the 
autonomous nature of control. Pattern recognition of 
the MES is currently widespread used for prosthetic 
control system design.  

In an attempt to increase the number of devices 
under the control of the MES, it is necessary to 
investigate a more sophisticated means to discriminate 
different muscle states [2]. In 1990, Hudgins presented 
a MES control scheme based upon simple time-
domain (TD) features using a multilayer perceptron 
(MLP) artificial neural network with around 10% error 
for four types of limb motions [5]. In 1999, Englehart 
used a wavelet packet transform (WPT) with linear 
discriminant analysis (LDA) and an error rate of 6.25% 
was achieved for a four class problem [6]. In 2001, 
continuous MES classification scheme was developed 
that outperformed the transient MES system. The 
exceptional accuracy of 0.5% error for four classes 
and 2% error for six classes was achieved by using 
WPT, principal component analysis and LDA [8]. In [3], 
a real-time continuous control scheme was developed 
to discriminate four classes of limb motions using a TD 

feature set and a MLP classifier with an error rate of 
6.75%. Chan first applied the Gaussian Mixture 
Models (GMM) on classification of MES with 6% error 
for a six-class problem [1]. Although the new 
classification techniques have shown improved 
performance, there remain many fascinating unsolved 
problems providing opportunities for progress.  

GMMs have become the dominant approach in 
speaker recognition and verification over the past 
several years [4][7]. In this work, GMMs are applied to 
develop a continuous classification scheme for MES 
control. This work uses pattern recognition to process 
four channels of MES, with the task of discriminating 
six classes of limb motions. The approach 
demonstrates high classification accuracy, low 
computational complexity and system robustness. 
 

II. METHODOLOGY 
 
The design cycle of a GMM-based limb motion 

recognition system may be thought of as a multistage 
process including data collection, front-end 
processing, feature extraction, classification, post-end 
processing and performance evaluation as shown in 
Fig.1. This section describes the techniques involved 
in each stage. 

 
Fig. 1 The stages of the GMM-based motion classification system 

A. Data Collection 
The Data used in this work are the same as the 

data in [1][3]. Four channels of MES data were 
collected from 12 normal subjects. Four sessions were 
conducted for each subject. In each session, each 
subject performed six limb motions: wrist flexion, wrist 
extension, supination, pronation, hand open, and hand 
closed. Subjects performed each limb motion twice 
and each limb motion is held for five second durations 
in each session. Each subject underwent four 60s 
sessions. Subjects performed each motion in a definite 
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order in the first and third sessions and in a random 
sequence in the second and fourth sessions. In this 
work, the first, second and third sessions were used as 
the training sessions and the fourth session was used 
as the test session.  

B. Front-end processing 
Limb motion classification is performed on 256 ms 

analysis windows. In an attempt to avoid transitory 
misclassification between classes, the 256ms sample 
window that overlapped a class transition point and the 
two 256ms adjacent windows to the overlapping 
record were eliminated from both the training and test 
sets. 

The training data were segmented into disjoint 
256ms windows such that each window contains new 
MES data. If the test data were processed in the same 
way, the system would produce a classification 
decision once every 256ms. However, it has been 
demonstrated that an alternative windowing scheme 
could efficiently produce a decision stream as dense 
as possible with the optimal window increment of 
32ms called the overlapping windowing scheme [2]. 
The test data were segmented using the overlapping 
windowing scheme. 

C. Feature Extraction 
Four channels of MES were collected and 

subjected to feature extraction. Features were 
extracted from each of the four channels, and 
concatenated into a single feature vector which is then 
provided to the pattern classifier. In this work, the TD 
feature set [5] and the 6th-order AR+RMS feature set 
were examined.  

The TD feature set consists of the number of zero 
crossings, the waveform length, the number of slope 
sign changes, and the mean absolute value. For each 
analysis window, a feature set is computed on each of 
four channels and then concatenated to form a 16 
dimensional feature vector.  

For each analysis window, a feature set which 
combined the 6th-order AR coefficients and the RMS 
(AR+RMS) was extracted on each channel. The 
feature set for each channel is a 7-dimensional feature 
vector. After concatenating the feature sets of four 
channels, the final feature set is 28-dimensional 
feature vector.  

D. Classification 
A Gaussian mixture density is a weighted sum of 

M component densities. A GMM is notated 
as },,{ iii Cw µλ r

= , i=1,�,M, by parameters of the 
mixture weights, mean vectors and covariance 
matrices. These parameters are estimated using the 
expectation-maximization (EM) algorithm respectively.  

The GMM has some powerful attributes. The 
GMM not only provides a smooth overall distribution 

fit, its components also clearly detail the multi-modal 
nature of the density [6].  In addition, it is 
computationally inexpensive and is based on a well-
known statistical model. Thus the GMM technique was 
applied to distinguish multiple limb motions. 

In an effort to identify six classes of limb activities, 
six GMMs (λ1, λ2 ,�, λ6) were applied to represent six 
motions. In the training session, the parameters of 
these six GMMs were estimated using EM algorithm. 
In the test session, each test pattern was subjected to 
these six GMMs and then six posteriori probabilities 
were computed. Finally, the maximum probability was 
selected and associated limb motion was labeled. 

E. Post-end processing 
It has been observed that a majority vote (MV) 

helps to filter out isolated misclassifications [1][2][3]. 
Therefore a MV technique was used at the post-end to 
process the decision stream to improve the accuracy 
of classification. For a given decision point Di, the 
majority vote decision DMV includes the previous m 
samples and the next m samples. The value of DMV is 
simply the class with the greatest number of 
occurrences in this (2m+1) point window of the 
decision stream [2].  

F. Performance Evaluation 
The GMM classification performance of each 

subject was computed as the percent of incorrectly 
classified patterns over all test motions. The 
performance evaluation was averaged across 12 
subjects; the results from each subject were averaged 
over ten trials to avoid the variance due to GMM 
initialization.  

The performance of the GMM classification 
scheme was compared to the previous motion 
identification methods, including the LDA, LP and 
MLP. 

 
III. EXPERIMENTS 

 

This section provides a complete investigation of 
the multiple steps involved in the GMM-based limb 
motion classification scheme as shown in Fig.1.  
GMMs with diagonal covariance matrices and the 
variance limiting of 0.05 were applied in the following 
experiment. The MV technique was used unless 
indicated otherwise. 

A. The Effect of the Feature Set Selection 
In this experiment, the TD feature set, the AR 

+RMS feature set and the combination of AR+RMS 
and TD (AR +RMS+TD) feature set were subjected to 
the GMM-based limb motion classification system 
respectively. The purpose of this experiment is to 
compare the GMM classification performance using 
various feature sets to achieve an optimal feature 
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configuration for the system. The criteria for 
determining an optimal feature set is a tradeoff of 
computational load versus classification performance.  
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Fig.2 Averaged GMM classification performance 

for selected feature sets 

The averaged classification performance across 
12 subjects for three types of feature sets is illustrated 
in Fig.2. From this figure, the AR+RMS+TD feature set 
has the best performance over all different mixture 
numbers of the GMM, compared with either the AR 
+RMS feature set or the TD feature set. The AR+RMS 
feature set has much better accuracy than the TD 
feature set with more than 2% improvement which is a 
35% improvement rate. The AR +RMS+TD feature set 
improves the classification accuracy slightly with 
approximate 0.5% improvement which is 15% 
improvement rate compared to the AR+RMS features.  

The results demonstrate that the feature set 
selection is essential to the classification performance. 
Because the AR+RMS+TD feature set measures the 
combination of the AR+RMS features and the TD 
features of the MES for multiple limb motions, it 
produces the highest classification accuracy. However, 
due to the computational complexity of the AR 
+RMS+TD feature set, it should be used only if 
sufficient computational capacity is available. 

B. Comparison to other limb motion classifiers 
The TD feature set, the AR+RMS feature set and 

the AR+RMS+TD feature set were explored upon 
different motion classifiers including the GMM, LDA, 
LP and MLP in this experiment. The averaged 
classification performance for these feature sets are 
compared in Table 1. The aim is to compare the 
performance of the GMM with the other three 
classification methods using the same data and 
feature sets.  

From Table 1, the GMMs with the optimal number 
of mixture components chosen for each subject 
(selected M) using the AR+RMS+TD feature set yields 
the best classification performance. The error rate of 
the GMMs with selected mixture components 
decreases to 3.09% which is 0.28% less error than the 

LDA and is 0.48% less error than the MLP. The GMM 
using the AR+RMS feature set also outperforms other 
motion techniques. The error rate for the GMM with 
selected components is 3.72% which is 0.7% less 
error than the LDA and 0.89% less error than the MLP. 
The GMM performance using TD feature set 
approaches the other motion models.  

Table 1 Averaged classification performance 
for selected classifiers and feature sets 

Model Classification 
Error (%) 

AR+RMS+TD

Classification 
Error (%) 
AR+RMS 

Classification 
Error (%) 

TD
GMM  

(Selected M) 
 

3.09 
 

3.72 
 

5.80 
GMM 3.77  (M=3) 4.32 (M=3) 6.57 (M=8) 

LDA 3.37 4.42 5.71 

LP 3.58 4.53 7.38 

MLP 3.57 4.61 5.71 

From the comparison, the GMM classifier 
outperforms other classifiers when the AR+RMS 
feature set was applied. It is observed that the GMMs 
with selected mixture orders for each subject have 
much better averaged classification performance than 
the GMMs with the optimal mixture order for all 
subjects. 

C. The effect of a Majority Vote (MV) 
To evaluate the efficacy of a MV upon the 

classification performance using the AR+RMS 
features, experimental results were obtained as 
follows. 
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Fig. 3 The effect of a MV on the averaged GMM classification 

performance using the AR+RMS feature set. 

Fig.3 shows the effect of a MV on the averaged 
GMM classification performance. We can see that a 
MV reduces the averaged classification error across 
various mixture numbers, especially for the high 
mixture numbers of the GMM. For the small mixture 
component GMMs, a MV improves the classification 
performance by roughly 2% while it dramatically 
improves the performance by roughly 4.3% for the 
large mixture component GMMs. Thus a MV �blunts� 
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the effect of the number of mixture components upon 
the performance in the GMM-based limb motion 
classification system. 
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(b) 

Fig. 4 The GMM predicted results of the test set with M=10 mixtures 
for subject #12.  Figure (a) depicts results without MV; 

Figure (b) shows the results with MV. 

Fig. 4 depicts the predicted results of the test set 
using the GMM, before MV and after MV. It can be 
noted that the prediction errors for the test set occur 
mostly at points of motion transition;  it is clear that a 
MV has a dramatic effect on accuracy. 

Table 2 The effect of a MV upon the averaged classification 
performance for selected classifiers using the AR +RMS feature set. 

Model Classification 
Error (%) 

Without MV 

Classification 
Error (%) 
With MV 

Improvement 
(%) 

Improvement 
Rate (%) 

GMM  
(Selected M) 

 
6.06 

 
3.72 

 
2.34 

 
39 

GMM 6.44 
(M=1) 

4.32 
(M=3) 

2.12 33 

LDA 5.74 4.42 1.32 23 

LP 6.66 4.53 2.13 32 

MLP 6.98 4.61 2.37 34 

Table 2 shows the effect of a MV on the 
performance for selected models. It is observed that 
the effect of a MV on the classification accuracy is 
significant. A MV technique not only increases the 

GMM classification performance by around 35% 
improvement rate, but also yields very good results for 
the other motion classifiers.  
 

IV. CONCLUSIONS 
 

A GMM classifier has been developed for 
myoelectric control of powered upper limb prostheses. 
It has been demonstrated that the AR 6th-order + 
RMS feature sets have better performance than TD 
feature sets for the GMM-based limb motion 
classification scheme. The GMM allows six classes of 
motion to be classified with an average of 3.09% error 
rate which is superior to the LDA, LP and MLP 
classifiers. The MV technique improves the accuracy 
significantly by eliminating spurious errors. The work 
indicates that the GMM provides robust motion 
discrimination for the task of motion classification. Due 
to its low computational cost associated with its 
training, it will enable the possibility of online classifier 
training and allow the classifier to dynamically adapt to 
continuous changes.  

The high accuracy of this method suggests that 
more challenging control problems can be addressed, 
such as simultaneous control of two motions.  This 
work is currently under investigation and, if successful, 
would represent a dramatic improvement in the 
dexterity with which powered upper limb prostheses 
may be controlled. 
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