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I. INTRODUCTION

During the contraction of skeletal muscle, there is 
an associated movement ions in the individual muscle 
fibres.  This electrical activity can be recorded using 
the surface electrodes located above the muscles of 
interest. The resultant signal is the sum of the muscle 
fibre action potentials in the vicinity of the electrodes, 
termed the myoelectric signal (MES). MESs are used 
in a variety of applications including prosthetic control, 
monitoring muscle fatigue, and automatic speech 
recognition (ASR) systems. The research done thus 
far in the prosthetic application of MESs employs 
different classification techniques based on different 
feature extraction and classification algorithms.

The purpose of this research is to address the 
following questions:

1. Assuming we are using autoregression (AR) 
coefficients as signal features, what effect 
does the AR model order have on the MES 
classification accuracy?

2. How many numbers of channels are required 
to maintain a high degree of classification 
accuracy?

To answer these questions, a series of 
experiments were performed to collect and process 
the MESs using different AR coefficients as signal 
features, computed using different AR model orders 
and different sets of MES channels.

II. METHODS

A. Data Collection

Data were collected in accordance with guidelines 
established by the Tri-council policy [1]. Eight channels 
of surface MES were collected from the right arm 
(Figure 1) using Duo-trode Ag-AgCl electrodes 
(Myotronics, 6140). Two of these electrodes 
(electrodes #1 and #2) were placed at a location one 
third of the forearm length from the wrist to the elbow. 
Five electrodes (electrodes #3 to #7) were placed at a 
location one third of the forearm length from the elbow 
to the wrist, with an equal spacing around the forearm. 
The eighth electrode was placed on the bicep muscle 

of the upper arm. An Ag-AgCl Red-Dot electrode (3M, 
2237) was placed on the wrist to provide a common 
ground reference. These signals were fed through 
wide band, high gain AC amplifiers (Model 15, Grass 
Telefactor), with the variable gain set at 1000 and 
bandwidth set at 1 Hz to 1 kHz. Signals were sampled 
at 3 kHz using an analog-to-digital converter board 
(National Instruments, PCI-6071E). MES data were 
later downsampled to 1 kHz and processed off-line 
using Matlab.

Data were collected from the right arm of thirty 
normally limbed subjects (twelve males and eighteen 
females). Each subject underwent four sessions, with 
one to two days’ separation between sessions. Each 
session consisted of six trials. Seven distinct limb 
motions were used: hand open, hand close, 
supination, pronation, wrist flexion, wrist extension, 
and rest. Within each trial, subjects held each limb 
motion, four times, for a duration of three seconds. 
The order of these limb motions was randomized. A 
five-second rest period was introduced at the start and 
end of each trial to avoid data being cutoff while 
collecting the data, making each trial 94 seconds in 
length. These five-second rest periods were removed 
before data processing. The elbow was sustained at 
90-degree flexion during the trials and a rest period 
approximately one minute was provided between each 
trial. Electrode placements were marked by permanent 
markers to ensure the consistency of recording sites 
throughout all the sessions. The electrode placements 
were documented by taking digital pictures (one 
ventral, one dorsal, and two lateral views) during the 
first session.

B. Training and testing

MES data were manually labeled with their 
associated limb motion by indexing the data files at the 
motion transitions. Classification of the MES was done 
in two steps: training and testing. The processing was 
done on the fourth session, as this session should 
have the least amount of variability and the majority of 
any learning effects. Data from the first two trials were 
used for training and remaining data from the last four 
trials were used for testing. Overlapping observations 

Note: The MES data for subject 5 did not show any muscle activity for supination and hence repeated all four sessions. This subject 
improved the classification accuracy from 81.66% to 92.27% for session 4.
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windows of 256 ms, with 32 ms spacing were used. 
Data from each window were parameterized using AR 
coefficients and classification was done by using linear 
discriminant analysis. In [2], it was noted that majority 
of classification errors occur in the transitory periods 
between limb motions. These errors are quite evident 
from the fact that the MES is in an undetermined state 
during contractions. To account for transitory periods, 
256 ms of data before the start and at the end of each 
limb motion were removed from the training as well as 
testing set.

Majority vote post-processing was used to help 
eliminate spurious misclassifications. Using a similar 
approach as in [3], a majority vote was implemented 
using the current elementary decision and the 
preceding eight elementary decisions. The 
classification accuracy (CA) results presented in this 
paper are based on majority vote, excluding transition 
periods. 

To study the effect of AR model order, the AR 
order was varied from 1 to 14 in steps of 1 and 
corresponding CA was calculated. The optimal result 
from this study was used as the feature set in the 
analysis of the effect of number of channels on the CA. 
Data used for classification was varied from 8 down to 
1 different combinations of channels, eliminating 
channels in steps of 1, and corresponding CA was 
calculated. During each iteration, the channel that had 
least effect on the CA after elimination was removed 
before the start of the following iteration. 

III. RESULTS 

A. Effect of autoregression order

The effect of the AR order on the CA is shown in 
the Figure 2. There is a 9.26% increase in the CA 

when the AR model order is changed from 1 to 2, 
followed by an increase of about 1.20% as the order is 
increased to 3. As the order is changed from 3 to 14, 
there does not appear to be drastic variation in CA. 
From 3 to 7, there is a total increase of 1.19%, beyond 
which there is a decrease in CA by 0.24% on average 
for each step increase in the AR order. Though there 
are not any dramatic fluctuations, the AR order 7 is 
noted as the optimal point with the highest CA of 
92.64%.  

The AR order 7 is chosen as the feature set in the 
further study of the effect of channel placements.   

B. Effect of number of channels

The effect of number of channels on CA is shown 
in the Figure 3. The CA increases as the number of 
channels increases from 1 to 7 and decreases slightly 
by 0.22% for eight channels. The CA jumps drastically 
by 17.31% when the number of channels is increased 
from 1 to 2 and by 4.20% from 2 to 3. The CA further 
increases almost linearly by 1.13% on average for 
each increase in the number of channels over the 
range 3 to 6. For 7 channels the CA further increases 
by a small amount of 0.35% and decreases for 8 
channels by 0.22%. This indicates that 7 is the 
optimum point after which any increase in the number 
of channels of data has adverse effect of the CA. The 
one channel that causes this decrease in the CA is 
channel #1.  

Figure 1 Electrode placements on the right arm

Figure 2: Effect of autoregression (AR) order on 
the classification accuracy (average with one 
standard deviation)
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IV. DISCUSSION

A. Primary Limb Motion(s):

The effect of channel elimination was studied in 
eight iterations, eliminating one channel in each 
iteration (Grid 1). In the first iteration channel #5 is the 
most important while channel #1 is the least important. 
The channel which had the least impact on CA after 
elimination was taken out before the following iteration, 
thus reducing the channel set by one. During the first 
iteration, channel #1 had the least effect on CA after 
elimination and was removed before second iteration. 
The order in which channels were eliminated is #1, #2, 
#4, #7, #8, #6, and #5. Empirically, it was found that 
channel #1 is the least important and channel #3 is the 
most important input. Though the order of importance 
varies between iterations, channels #3, #5, #6 and #8 
were consistently the first four important channels, 
which give considerably high CA of 90.48%.   

Table 1 summarizes target muscle(s) and limb 
motion(s) associated with each channel determined by 
human physiology of limb movement [4]. It should be 
noted that none of the target muscles have a primary 
role in hand close or pronation. All muscles in the 
given table run along the forearm length, except 
channel #8, which runs along the upper arm length. A 
muscle is fleshy at the center and tapers at the ends. 
Channels #1 and #2 are placed at the ends of the 
muscles and channels #4 and #7 are placed in 
between the two muscles. All these four muscles are 
eliminated in the first four iterations of channel 
elimination process. Channels #3, #5, #6 and #8, 
which are placed on the fleshy part of the muscles, are 
found to be most effective control input. It is interesting 
to note that the two electrode sites closest to the hand 
(channel #1 and channel #2) were the least important 
channels, despite the limb motions being primarily 
hand and wrist motions. It appears that channel 
placement at the center of the muscle is more 
important, perhaps as it produces a signal that is more 
consistent and higher in amplitude.   

B. Effect of AR order and number of channels:

There is a common ground that ties both the AR 
order and number of channels. Increasing the AR 
order or the number of channels has an adverse effect 
on CA beyond a particular optimal point; for the data in 
this study, the optimal AR model order was 7 and the 
optimal number of channels was 7 as well. Increasing 
AR order or number of channels provides additional 
information to the classification system and should 
theoretically increase CA, or at least not be a 
detriment to the system; however, this theory fails in 

5 5 5 5 5 5 3 3
3 3 6 6 6 3 5
6 6 3 3 3 6
8 8 7 8 8
7 4 8 7
2 7 4
4 2
1

Grid 1: The order of channel elimination

Figure 3: Effect of number of channels on the 
classification accuracy (average with one 
standard deviation)

Channel # Muscle(s) Limb motion(s)

1 Flexor carpi radialis Wrist flexion
2 Extensor carpi 

ulnaris
Wrist extension

3 Brachioradialis Wrist flexion
4 In between 

brachioradialis and 
flexor carpi radialis

Wrist flexion

5 Flexor carpi ulnaris Wrist flexion
6 Extensor digitorum Wrist extension, 

Hand open
7 In between 

extensor carpi 
ulnaris and flexor 
carpi ulnaris

Wrist flexion, 
Wrist extension

8 Biceps Supination

Table 1: Primary Limb Motion(s)
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practice, because the introduction of additional 
information also increases the variability of training 
data. Beyond a certain point, the additional information 
will provide little redundant information, which would 
require additional training data to reduce the effects of 
the training data variability necessary to make this 
non-redundant information useful. The potential 
increase is CA may be outweighed by the increase 
required in training data and hence training time.

Figure 4 shows distribution of the number of 
subjects over different CA ranges (AR order 7 with 7 
channels of data). All the subjects show the CA above 
75% and there is a large majority of the subjects (just 
over 75%) that have a CA above 90%. As noted 
earlier, the MES data for subject 5 did not show any 
muscle activity for supination and hence repeated all 
four sessions. This subject improved CA from 81.66% 
to 92.27% for session 4. There is a high probability of 
subjects with a CA lower than 90% significantly 
improving by having subjects undertake more training 
to learn to perform limb motions with increased 
consistency.

IV. CONCLUSION

A high degree of classification accuracy (92.64%) 
is obtained using autoregression (AR) as the feature 
set at the AR order 7, using all eight channels. This is 
an optimal value after which any increase in the AR 
order decrease the classification accuracy.

Increasing number of channels increases the 
classification accuracy up to a certain point. The 
highest classification accuracy of 92.84% is found at 7 
channels. Increasing the number of channels beyond 7 
decreases the classification accuracy, albeit a small 
amount (0.22%). It is also important to note that even 
with only four channels of MES, classification accuracy 
is excess of 90% is still possible. 

This dataset establishes a good database that will 
enable comparisons of other signal features such as 
root mean square and waveform length transform. 
Collecting data across multiple sessions and trials also 
enables the investigation of inter and intra-test 
variability to further improve the classification accuracy 
for myoelectrically controlled prostheses.
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