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Abstract— A key challenge in gesture recognition for augmen-
tative communication is the ability to characterize a given gesture
by its fundamental and invariant properties. This paper proposes
a new approach to this problem, based on characterizing gestures
with primitive labels such as “left-up to right-down”. It uses
movement as a recognition cue and the relative positions between
key motion descriptors to characterize the gesture. This approach
is robust to rotation and changes in scale and is performer inde-
pendent. Further, the method can tolerate cluttered backgrounds
and does not require the user to wear any accessories. A single
representative example is sufficient to characterize a given gesture
and no training is required. Experiments with a set of gestures
performed by different individuals in a cluttered environment
demonstrate the robustness of the approach. Implications for
gesture-based augmentative communication are briefly discussed.

Index Terms— gesture recognition, motion detection, human
computer interface, augmentative communication.

I. I NTRODUCTION

T HE inability to communicate places a large amount
of stress, not only on patients but also on families

and caregivers. Families and caregivers are often unable to
interpret the needs, preferences and feelings of patients [1].
To address this communication need, a system is required to
compensate for the lack of communication ability. Typical
solutions may take the form of printed material (e.g. a
picture board) or an electronic device. These alternative
communication strategies form a field of study known as
Augmented and Alternative Communication (AAC) [2].

Gesture recognition (GR) systems gather information to
determine limb or body position to allow a human-machine
interaction. This interaction can be contact or non contact.
Examples of GR systems are found throughout the literature.
Azoz et al. presented a system to recognize arm movements
[3]. Skin color was used as a cue to perform head and hand
localization. Their work was based on the mathematical
modeling of the arm (elbow-shoulder-hand) and the relation
between their parts, thus defining implicit constraints that
made it an accurate but rigid model. Psarrou et al. presented
a system capable of gesture recognition which also described
movement patterns in a typical office [4]. However, they relied
heavily on statistical data to account for the characteristics
and variability of the event’s duration. Nishimura and Mukai
performed similar experiments, employing low resolution
images to extract features and to counter two common
problems in GR, namely threshold adjustment and offline

training [5]. Starner et al. at MIT developed a real time
system for American Sign Language (ASL) using Hidden
Markov Models. They relied on motion detection, orientation
and hands/arms trajectories as well as cueing with the skin’s
natural color. Unfortunately, their system only worked with
a single user [6]. Matsugu et al. used a convolutional neural
network for GR. They determined face location using color
cues and isolated the position of the eyes and mouth. They
were able to achieve subject-independent recognition and
could determine three gestures: smiling, laughing and a
neutral face. Due to their neural network approach, at least
20,000 images were required [7].

In this paper, we propose the Dynamic Binary Frame of Ref-
erence (DBFR) method for gesture recognition. This method
has several advantages over existing techniques including
tolerance to different degrees of rotation, scale and geometry
invariance of the moving object and performer independence.
This method does not require a rigid mathematical model.
Thus, it is capable of recognizing the same gesture performed
using different body parts, such as an arm, hand or finger. The
system operates in cluttered backgrounds and does not impose
restrictions on the user by way of accessories or sensors.
The main feature of the system is its capability to operate
without any adjustment, assuming that the gesture performed
is defined in the gesture database. Additionally, gestures can
be linguistically described using combinations of lay terms
such as up, right, left and down.

II. M ETHOD DESCRIPTION

The Dynamic Binary Frame of Reference method uses
a loose frame of reference to determine the direction of
movement at a given time. Its binary nature arises from its
consideration of two possible motion descriptors per axis, as
described later in the paper.

The GR system records video sequences of varying length
at a fixed frame rate and recognizes the gestures performed.
The overall GR algorithm is described as follows:

1) Image acquisition
2) Image undersampling
3) Calculation of first difference.
4) Dilatation.
5) Calculation of second difference.
6) Cumulative subtraction.
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7) Local maxima extraction.
8) Relative direction.
Images taken from a webcam typically have a resolution

of 320 × 240 pixels. Thus, processing such images becomes
a costly computational task. We acquire images using a
resolution of160 × 120 and then the images are undersam-
pled to 16 × 12 pixels. Assume that we have acquired and
downsampled a video sequence ofn frames. Each image is
then subtracted from its preceeding one in a serial fashion
providing anapparent motionmatrix Mam for each image
pair, as shown in equation (1). The resulting video sequence
contains onlyn− 1 frames.

Mam(n− 1) = I(n)− I(n− 1) (1)

Fig. 1. Original sequenceI; first difference (apparent motion)Mam; second
difference (true motion)Mtm

Some recognition algorithms stop at this substraction step,
but the information contained inMam is not completely true
due to movement and natural hardware noise inherent in
acquired images. These noise variations continuously produce
changes between frames even if scene or lighting conditions
remain constant. To overcome this problem, it is imperative to
validate the information in our matrix through an additional
step. To this end, we computetrue movement, that is, continu-
ous and uninterrupted movement within a sequence of frames,
without any assumptions about the instantaneous direction of
movement. By expanding or dilating apparent motion frames
with a binary filter, f , and performing a logicalAND on
Mex(n−1) andMex(n) we can accomodate future directions
of movement.

Mex(n− 1) = Mam(n− 1)× f (2)

where:

f =

 0 1 0
1 1 1
0 1 0

 (3)

Mex represents the expanded matrix and× symbolizes the
correlation operation.

Next, we compute the difference between successive ex-
panded matrices to obtain a true motion matrix,Mtm.

Mtm(n− 2) = Mex(n− 1)−Mex(n− 2) (4)

After this operation, the number of useful frames isn− 2.
We perform a second subtraction of consecutivetrue motion

matricesMtm.

T (τ) =
τ∑
n

Mtm(n)−Mtm(n− 1) (5)

where, the entry on theith row andjth column is

Tij =

 −1 Initial position
0 Partial or no movement
1 Final position

(6)

This step provides a new set of matrices,T , with entries
{Ci, Cn, Cf} = {−1, 0, 1}, whereCi represents the start of
the motion,Cn stands for partial or null movement andCf

indicates the end of the trajectory. The subtraction of two
true motion matrices will result in partial trajectories. By
performing an addition of all the partial results over a period
τ we arrive at the true trajectory of the object.

An accumulative movementmatrix Mc given by equation
(7) can be computed.

Mc(n− 2) =
τ∑

n−2

Mtm(n− 2) (7)

whereτi is a sequence ofi consecutive frames.
In Mc, we determine the elements with maximal movement

denoted byCm as exemplified in (8).

Mc =


0 0 0 0
0 1 1 0
2 2 2 2
3 5 4 3

 ⇒


0 0 0 0
0 1 1 0
2 2 2 2
3 Cm 4 3

 (8)

We construct a table containing motion descriptors given
by their relative positions between elements indicated by five
motion descriptors:left (L), right (R), up (U), down (D),
do not care (X). The “do not care” (X) symbol is included
to deal with uncertainty during certain stages of movement.
For example, on a vertical trace, it is clear that the object
is moving upward but it might also contain a slight lateral
movement. To avoid the use of thresholds, these ill-defined
traces are discarded.

The matrix (9) shows an example ofCm, Ci, Cf . The
associated motion descriptors are listed in Table I.

0 0 0 0
Ci 0 0 0
0 0 0 0
0 Cm 0 Cf

 (9)

This matrix provides valuable relative information about
the observed gesture, which allows recognition to be invariant
to a certain degree of rotation and changes in size or shape.
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Additionally, it creates a map of relative positions between
initial and final positions for each periodτ .

TABLE I

RELATIVE POSITIONS TOCm . MOTION DESCRIPTORS: LEFT (L), RIGHT

(R), UP (U), DOWN (D), DO NOT CARE (X)

Ci Cf

Cm L R
Cm D X

The simple nature of the above motion descriptors permits
the creation of gesture templates by hand even without having
to acquire image sequences. Therefore, we are able to train
the computer about an admissible movement using a single
representative example.

III. D ESCRIPTION OF THE SYSTEM

A PC Celeron at 800MHz is employed to perform
processing and recognition. A low cost USB webcam records
images at 8 frames per second using a resolution of160×120
pixels. We do not use any color information to process or
recognize the gestures. Hence, the green component of the
images is used and it is treated as a gray image.

A single moving object is monitored, where the physical
movement of each gesture resembles the pen stroke of its
written version. The database of gestures (DBG) currently
contains four gestures with the following symbols: “alpha”,
“gamma”, “o” and “N”. These gestures are performed by an
able-bodied user. For each gesture, a representative movement
is recorded individually in a cluttered environment, as shown
in Figure 2. Another possibility is to manually encode the
gestures. For example, agammagesture would be encoded
with the following description: right-down, left-down, left-up,
right-up or in motion descriptor codes RD, LD, LU, RU.

Fig. 2. Sequence of frames of a gamma gesture

The system uses a sequence of frames of varying length
containing a single gesture as an input. There are no postural

constraints imposed on the performer. However, the camera
defines a maximum gesture speed due to acquisition time.
The system’s output contains the linguistic description of the
gesture. Two tests are performed to measure the system’s
accuracy and computational load.

IV. RESULTS

Three subjects performed different gestures that are
analyzed and recognized according to the DBG. To determine
if the motion analyzed is in the DBG a scoring system was
employed. Each motion descriptor pair obtained from the
video sequence was compared against the DBG and only the
entries with equal characteristics scored points. No partial
points were given for mismatches or partial matches, therefore
a perfect correlation between pairs must be observed. The
system currently does not deal with variations or missing
motion descriptors. These variations may occur in the video
sequence when a gesture is performed at a high speed.

The system was tested with three different subjects. Subjects
had no previous training. Each subject performed each gesture
three times and in some cases, gestures were performed in
different ways, namely, by varying the distance between the
performer and the camera; and, by varying the body part
employed, for example the shoulder, elbow, wrist or knuckle
as shown in Figure 3. The only change between trials was
camera positioning. Thus, the system’s capability to process
inputs from different body parts was tested.

Fig. 3. Different moving body parts recognized by the system. Images shown
are clockwise starting from the top-left: knuckle, right shoulder-elbow, left
shoulder-elbow and wrist

The following results were obtained:

TABLE II

RESULTS

True Positives Negatives False positives
Subject 1 66.6% 11.1% 22.2%
Subject 2 77.7% 11.1% 11.1%
Subject 3 100% 0.0% 0.0%



CMBES APRIL, 2004 4

The negative results are related to the limited acquisition
speed of the camera and high speed gestures that created
empty slots or missing motion descriptors.

A second test was performed to measure the computational
load required using different resolutions. Computational load
was measured by using a set of different undersampled images.
First the original size of160×120 pixels was used (grid size of
1). The image size was gradually reduced to4×3 pixels (grid
size of 40). As shown in Figure 4, the use of low resolution
images exponentialy reduces the computational cost. A grid
size between 10 to 20 pixels showed good performance and
reasonable processing time. Processing each frame at these
resolutions takes on average 0.160 milliseconds or at most
0.8% of the time required to process larger images of160×120
pixels.

Fig. 4. Average time required to process an “alpha” gesture with different
image sizes.

Preliminarily tests showed a potential insensitivity to
changes in magnitude or depth of the moving objects in the
scene. We also found that when the end trace of a gesture
coincides with the start of another, the system is able to
recognize each gesture, due to lack of movement between
gestures.

V. CONCLUSION

We presented a novel method to characterize and recognize
gestures based in DBFR and itsrelativenature. The presented
system shows that recognition of moving objects is not color
or shape dependent.

The system characterizes moving objects by their dynamic
properties using low resolution features. Additionally, the
system robustly copes with different body parts without the
need for adjustments. Two further characteristics of the system
are worthy of mention. Firstly, the system ignores purely
vertical and horizontal movements as their detection requires
the definition of ad-hoc thresholds.

Consequently, the system only robustly recognizes angled
movements. Secondly, the camera capture speed defines a
maximum gesture speed.

The system in clinical settings will provide a human-
machine interface to patients. It is expected the system will
promote patient communication during periods of voiceless-
ness. The advantage of having a system that requires no
adjustments will allow patients to operate the system in a less
intrusive and comfortable way. Moreover, the system will not
require intensive external assistance.

VI. FUTURE WORK

The system is in its early stages. Additional capabilities like
the ability to deal with missing motion descriptors as well as
the ability to recognize gestures in a continuous stream will be
included in the future. As well, we will incorporate the ability
to recognize multiple moving objects or areas of interest.
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