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Abstract - The system architecture for an intelligent, pediatric, 
non-contact communication aid is proposed for temporarily 
mute patients.  It consists of user profile, knowledge base and 
pattern prediction modules interfacing through a central 
information manager.  The information manager communicates 
with the user via a dialogue manager and visual interface. 
 To ensure that the system is easy to use, several learning 
algorithms are proposed for the pattern prediction module to 
be able to predict future inputs and display them for easy 
location and selection by the user.  A backpropagation 
algorithm is explored in detail, where data triplets are used to 
train the network.  The data is generated through a simulator 
that creates sets of data based on biases for time of day, 
previous selection(s), and time gap between selections.  
Although the prediction rate is heavily tied to the simulator 
biases (representing underlying behavioral patterns), it is 
significantly increased compared to random guessing.  The 
prediction rate is also closely linked to the number of training 
cases that the network gets to see. 
 Implementation of such learning algorithms within the 
structure proposed may lead to improved speed and accuracy 
of communication, and less support required to teach and 
maintain the system. 
 
Keywords - Augmentative and alternative communication, 
backpropagation, communication aid, data generator, pattern 
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INTRODUCTION 
 

Temporary voiceless is a common problem 
encountered in intensive care patients.  Causes range 
from surgical side effects to application of medical 
devices (e.g.  intubations) (Costello, 2000), but effect 
is always the same: an inability to communicate basic 
needs.  This is especially predominant in pediatrics, 
where pre- or emerging literate children cannot 
communicate through conventional writing or 
complicated gestures. 

A communication aid is proposed that will allow 
pediatric intensive care patients to have access to 
digital visual stimuli that can be manipulated in order to 
obtain a desired output.  In order to facilitate 
communication, it is important to make the interface 
between the system and the user as simple as 
possible with the basic requirement being only to have 
an appropriate output based on user input.  Although 
the exact type of interface is unimportant here, as 
there are many methods of achieving such a 
requirement, it is assumed that the interface will 

translate patient movement into a selection of iconic 
representations that are translated into speech. 

This paper starts with an outline of the proposed 
communication aid system architecture, followed by a 
more in-depth look at possible intelligent features, and 
the implications on system performance and patient 
interaction. 
 

BASIC SYSTEM ARCHITECTURE 
 

The system consists of several different modules 
which are controlled by a central information manager.  
The external system consists of user input and 
feedback and an external system administrator while 
the internal system consists of User Profile, 
Knowledge Base, Pattern Recognition, Timer, 
Dialogue Manager, and Visual Interface modules, all 
which feed into the central Information Manager (see 
Figure 1). 
User Input and Feedback 

To allow communication for patients that may 
have difficulty in using a conventional mouse (due, for 
example, to muscular atrophy, paralysis, or other such 
motor impairments) a web-camera will be used to 
translate patient movement (of any magnitude by any 
body part) into system inputs.  The user will have 
visual feedback on how their movement is translated 
into system input to aid in navigation and selection of 
icons.   
Visual Interface 

The primary function of the visual interface is to 
convey user intention to the system through gesture 
recognition, which is the process by which the system 
attempts to robustly discriminate user motions and 
convert them into valid system input.  The visual 
interface is also responsible for automatically 
determining the range of motion of the user 
(movement space) and adjusting the camera to 
compensate. 
Dialogue Manager 
 The Dialogue manager is responsible for 
converting all inputs and outputs into their required 
form.  The external inputs into the system (camera and 
system administrator) are converted into a digital form 
that allows for signal processing and storage.  
Conversely, system outputs (motion feedback, pattern 



prediction, etc.) are converted to a visual form as to be 
easily understood by the user.  
Timer  

Any camera input that is deemed to be an iconic 
selection by the visual interface will be time-tagged to 
keep temporal control and to help with classification 
and prediction of the inputs.  
User Profile 
 A profile will be created for every new user of the 
system containing specific physical, historical, 
circumstantial, and preference information.  All system 
interactions of that individual will be recorded here, 
and used in conjunction with profile information to aid 
in improving system interaction and prediction of future 
inputs. 
Knowledge Base 
 The knowledge base is a collection of information 
that applies more or less universally.  Initially, the 
information contained in the knowledge base will only 
consist of human physiological requirements (e.g. will 
eat and sleep every day), but will be increased in 
breadth the more the system is used.  Once a 
minimum threshold has been reached within user 
profiles that show similar information on a specific 
subject, the knowledge base will be updated to include 
that information.  This is to reduce the system learning 
and adaptation time to each new user.   
Pattern Recognition 

The Pattern Recognition Module consists of the  
prediction of inputs (discussed in detail in the following 
section), as well as memory reduction techniques (to 
limit the amount of information storage space required) 
and decisions on updating the visual interface to ease 
interaction.  
Information Manager 

This processing unit controls all aspects of the 
communication aid, which can be broken down into 
two main categories, module communication and 
system maintenance.   
 Module communication consists of relaying all 
internal system information to the required modules.  It 
is also responsible for assimilating information from all 
modules and outputting to the Visual Interface 
accordingly.  
System maintenance ensures that the internal 
environment functions optimally.  Responsibilities 
include managing storage space, ensuring system 
stability when making alterations to the system, and 
information matching to ensure reliability and 
consistency of all information being passed. 
External System Administrator 
 This module provides access to the system from 
an external administrator to add or update User 
Profiles and Knowledge Base, as well as change 
system settings for the Information and Dialogue 
Manager. 

 
Figure 1 – Basic Communication Aid System 

Architecture 

Brain Analogy 
The manner in which the system interprets inputs 

is fairly intuitive since it is similar to the way that 
humans assimilate information from their environment.  
The brain processes massive amounts of rapidly 
changing perceptual information and tries to 
categorize it according to its current perception 
(pattern recognition).  The basis of that perception is 
largely related to our personality and previous 
encounters with similar information.  If enough 
encounters occur that are contrary to our perception, 
then that perception might change (user profile).  If 
enough information is processed that cannot be 
adequately represented by our current perception, the 
underlying basis for that belief may eventually be 
altered (knowledge base). 
 

PATTERN RECOGNITION 
 

One of the major criteria for an intelligent pediatric 
communication aid is that is simple to learn and simple 
to use.  This module contains algorithms by which 
previous user inputs are used to predict currently 
desired ones, to reduce icon location and selection 
times.  The simplest type of prediction is a frequency 
counter, whereby the most often selected icons are the 
most likely to be selected in the future.  Other more in 
depth algorithms (learning networks) include a 
backpropagation algorithm to predict inputs based on 
the immediately preceding selections, and a Markov 
model to predict inputs based on the historical 
sequences observed. 
 A backpropagation algorithm was implemented in 
order to ensure that learning networks as such can 
improve the interaction with the system.  In this case, a 
fully connected network was used with one layer of 
hidden units and small, random initial weights and 
biases for the hidden and output units (see Figure 2).  
Within the backpropagation algorithm, momentum is 
used to speed learning, and a weight cost is used to 
keep the weights small.  The network gives an input 
dependent output for each icon, (where the largest 
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output corresponds to the best prediction) and a cross-
entropy error (the negative log probability that the 
network gives the right answer for each case). 

The major implementation difficulty is that a 
substantial amount of data is required in order to train 
the network to the point of having noticeable 
improvement.  As no patient data of this type has yet 
been collected, a simulator was created to generate 
data.   
Data Simulator 

A user model has been created in an attempt to 
replicate the inputs the network might see with a 
‘typical patient’.  Each set of icons consists of the icon 
to be predicted (icon 3), and the two previously 
selected icons (icon 1 and icon 2).   

The time of day that each set occurs is random, 
and the time gap between icons in a set is based on 
probability tables (smaller gaps being more likely than 
larger ones).  Bias table were created (with efforts to 
make them as realistic as possible) to alter the 
probabilities that each icon was selected based on 
time of day and previously selected icons.  Each 
possible icon was put through a normalized softmax 
(see Equations (1), (2), (3)), and selected randomly 
based on their percent probability from that softmax.  
The softmax used to generate icon 1 probabilities is 
shown in Equation (1). 
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Pi:  probability of selecting icon i 
btd:  bias from time of day 
b1p:  bias from previous icon selected 

The softmax used to generate icon 2 probabilities is 
shown in Equation (2). 
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ftg1p: function of the time gap since the previous 
icon 

The softmax used to generate icon 3 probabilities is 
shown in Equation (3). 
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b2p:  bias from 2nd to last icon selected 
ftg2p: function of the time gap since 2nd to last icon  
b1&2p: bias from combination of last 2 icons 

The function used for time gaps is shown in 
Equation (4). 
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 This function is used so that the influence an icon 
exerts on the selection of the following icon increases 
as the time between them decreases.  The cutoff at 11 
minutes ensures that immediately preceding icons do 
not over-exert influence on the following selection. 

In order to reduce the scope of the simulator, there 
have been several assumptions made, namely, 
• System outputs represent those desired by the 

user (no incorrect or accidental outputs) 
• There are only 10 possible outputs (plus a ‘no 

output’ selection) 
• Only selections made within 3 hours of the output 

to be predicted have an effect on that output 
• Only the 2 previous selections have an effect on 

the output to be predicted, regardless of time 
• If there have not been 2 previous inputs in the 3 

hours prior to the output to be predicted, the 
‘missing’ outputs are considered to be ‘no input’ 

• Requests by the user through the system are 
fulfilled 

Learning Algorithm 
Icon 1, time gap between icon 1 and 3, icon 2, 

time gap between icon 2 and 3, and time of day of icon 
3 were used as inputs into the network for each set of 
data.  During training, the output of the system was 
compared to the actual icon 3, and the error 
derivatives were backpropagated through the system 
to update the weights and biases (see Figure 2).  After 
each iteration, separate testing data was run through 
the network (with no indication of the correct icon 3 
output) to determine how well the output could be 
predicted (from choosing the icon with the maximum 
output from the network as the right answer). 

 
Figure 2 – Backpropagation Network (some components 
removed for clarity), where Wij is the connection weight 

between unit i and j, Bj is the bias of unit j. 

Factors Affecting Prediction  
The largest determining factor in how well the system 
could predict desired outputs was the magnitude of the 
biases (representing the strength of the underlying 
behavioral patterns).  A bias dividing factor was used 
to illustrate this dependency, and the correlation 
between prediction rates and the bias dividing factor is 
shown in Figure 3.  It must be noted that biases would 

(4)



change with every individual, and it is impossible to 
gauge where an ‘adequate’ bias is achieved.  
Imposing a constraint that the most probable selection 
is no more than 30 times more likely than the least 
probable selection (for icon 1) gave a bias diving factor 
of around 18, which was used for all simulations. 
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Figure 3 – Prediction Error Dependency on Bias 

Dividing Factor 

Another significant determining factor in the 
accuracy of predictions was the number of training 
cases supplied to the system.  Since each patient is 
different, and may only be using the communication 
aid for a limited period of time, it would be ideal to pre-
train the system using simulated data.  Unfortunately, 
it is extremely difficult to replicate all the different 
behavioral factors involved in accurately creating such 
a simulator.  Training the system from an initial 
untrained state gave prediction rates shown in Figure 
4.  The network only improved the percent error rate 
from 91% to 90% after 250 training sets, and settled to 
a minimum of about 71% error rate after around 4500 
training sets. 
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Figure 4 – Prediction Error Dependency on Number of 
Training Cases 

Adjusting the algorithm parameters affected the 
ability to predict outputs, but given that the parameters 
were within a fairly broad range, did not have nearly as 
much of an effect as training cases or bias factor.  The 
best results occurred with 20 hidden units, a slow 
learning rate and relatively large prejudice for keeping 
the weights small.   

Time Implementation 
Time of day is represented by a series of 12 

triangles, each with peaks 2 hours apart.  The base of 
each triangle spans 6 hours, meaning that only if the 
time of day was ±3 hours from each peak time would 
there be any input for that triangle.  The input for each 
triangle is the ratio of height of the triangle at the 
specified time to the height of the full triangle.  This 
gives a more consistent flow to the time of day, where 
nearby times have similar inputs to the system.  
Although specific time would have been adequate for 
the backpropagation algorithm, having nearby times 
give similar inputs will help when implementing a 
learning algorithm that predicts inputs via sequences 
from similar times of previous days.  
 

CONCLUSIONS AND FUTURE WORK 
 

The implementation of a backpropagation 
algorithm can definitely improve the prediction ability of 
an intelligent, non-contact communication aid, but the 
degree depends on the intensity of the underlying 
personality patterns, and the amount of exposure an 
individual has with the system.   

Future work includes adding information from the 
Knowledge Base and User Profile as inputs to the 
learning networks, implementing the Markov model 
and frequency counter, and optimizing the Information 
Manager so that when different predictors output the 
same prediction, then one of them would revert to the 
second best option.  The intelligent communication aid 
will then be tested against a non-intelligent counterpart 
to quantitatively assess the actual benefit of intelligent 
features.  

It is expected that the application of learning 
algorithms and other intelligent features to a 
communication device will decrease frustration levels 
and familiarization time with the system, and increase 
the speed and accuracy of patient communication.  It 
is also expected to require less maintenance and 
setup by health care professionals, as the system can 
be automatically tailored to each individual user. 
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