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INTRODUCTION 

 

 
 

 
 

A motoneuron pool in the spinal cord, associated 
with a given muscle, receives a multitude of neural 
commands from different parts of the central and 
peripheral nervous systems. The time course of the 
firing patterns of the motoneurons will define the 
dynamic behavior of the innervated muscle. The 
transformation of all synaptic inputs to the motoneuron 
pool onto muscle commands depends strongly on 
each motoneuron’s intrinsic characteristics as well as 
on the associated neuronal network. As all involved 
relations are nonlinear, the functioning of the network 
has to be studied by simulation experiments. In a first 
stage, as described in this paper, our objective was to 
build a user-friendly simulator of a spinal cord neuronal 
network including a motoneuron pool, synaptic inputs 
from several sources (including the negative feedback 
due to Renshaw cells) and the generation of force by 
the associated muscle. There have been efforts 
described in the literature towards the development of 
spinal cord simulators (Maltenfort et al. 1998; 
Uchiyama et al. 2003), but usually the network 
simulator has been developed to answer a specific 
question and its general usability by a wider audience 
(without the need for programming) was not 
emphasized. In what follows we shall describe the 
structure of the neuronal network, the basic models 
employed for each element and the types of graphical 
analyses included in the simulator. 
 
 

METHODOLOGY 
 
 

The simulated network structure is shown in Fig. 1. 
There are 272 motoneurons (MNs), with 70 type S, 62 
type FR and 140 type FF, and 68 Renshaw cells (RC). 
The modeling was based mostly on available 
knowledge and data on cat gastrocnemius 
motoneurons and muscle fibers.  

In the present version, relatively simple models 
were used for each element, so that the development 
of the network structure in an appropriate software 
environment could pave the way for future 
improvements of each element’s model. This simplicity 

was also deemed important for an overall analysis of 
the operation of the simulator, from the parameter 
setup phase to that when the results are graphed and 
analyzed. 

 

 
Fig. 1 – Structure of the simulated network. 
 
The motoneuron pool receives synaptic inputs 

from a few independent pathways: cortico-spinal, 
rubrospinal (excitatory and inhibitory), Ia afferents, Ia 
reciprocal inhibition. Each of these inputs, if selected 
by the user, goes to all the MNs but with an effect that 
depends on each MN characteristics. The user may 
select either of two point processes for such inputs: 
Poisson or one with truncated Gaussian interspike 
interval with selectable mean and standard deviation. 
The former would mimic the superposition of many 
independent point processes while the latter could 
mimic the superposition of synchronized inputs. To 
mimic synaptic inputs that are independent from one 
MN to another, each MN also receives a lowpass 
filtered noise, with user selectable standard deviation 
and cutoff frequency.  

Each motoneuron was modeled as a parallel 
association of a capacitance and several 
conductances in series with fixed voltage batteries. For 



simplicity, the dendrites were not modeled in this first 
version, each presynaptic action potential affecting the 
motoneuron by a change in a single corresponding 
conductance, as described below.  

Equations (1-5) describe the membrane potential 
of each motoneuron: 
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where: 
 
all potentials are with respect to the resting potential, 
V is the membrane potential, 
V0 is the leak potential, assumed equal to 0 mV, 
VK  is the potassium Nernst potential, taken as –10.0 
mV, 
Vsyn is the reversal potential for each synaptic input, 
equal to 70.0 mV for excitatory synapses and –16.0 
mV for inhibitory, 
Vi  = –16 mV, the reversal potential of the Renshaw 
inhibitory synapses, 
R is the leak resistance, 
τmem  is the membrane time constant in the resting 
state, 
Ileak  is the leakage current, 
IK  is the potassium current, 
Isyn represents any of the 4 synaptic inputs depicted in 
Fig. 1, 
IRC is the current caused by the Renshaw cells, 
Isn corresponds to the synaptic noise input, 
implemented as a lowpass filtered white noise 
Gsyn are alfa functions corresponding to the synaptic 
input conductances of each MN. 
GK is a two-exponential approximation to the four 
exponential proposal of (Baldissera and Gustafsson 
1974), an example being shown in Fig. 2. 
GRC is an alpha function conductance activated by the 
Renshaw cell inputs. 
 

The three main types of motor units, S, FR and 
FF, found in mammals are modeled and included in 
the simulator. Whenever a MN fires a spike, there is a 
corresponding twitch on the respective muscle unit 
following an alfa function and an activation of Renshaw 
cells. These were modeled either by a fixed burst 
output, or by a parallel association of conductances 
with a time-varying potassium conductance. Each RC 

was associated with 4 MNs on the same horizontal 
plane crossing the column of MNs running in the 
rostro-caudal 

 
Fig. 2 – Potassium conductance following an 

action potential for FR type MN model. 
 

direction in the spinal cord. Therefore, there were 68 
planes, with the more caudal containing the S type 
MNs, the intermediate the FR type MNs and the more 
rostral planes containing the FF type MNs. The 
synaptic strength from a RC to a MN was maximum for 
the MNs in the same plane as the RC and decayed for 
MNs situated in planes on either side, with each RC 
limited to have a maximum span of 15 planes above 
and 15 below. On the other hand, each MN affects 
RCs on 2 planes above, 2 below and on the same 
plane, i.e., each MN affects 5 RCs. In the simple 
bursting RC model, each connected MN firing 
generates a burst (default duration: 40 ms) with a 
selectable discharge rate (default: 200/s). More refined 
bursting RC models could be included in future 
versions (Uchiyama et al. 2003). 

The simulator may be subdivided in three 
parts: a parameter configuration module (with a set of 
default values and selectable standard deviations), an 
execution module and an analysis module. The 
configuration and analysis modules were developed in 
an event oriented concept using the Windows 
graphical interface. The execution module, which is the 
heart of the simulator, solves the differential equations 
of all the interconnected elements using a 4th order 
Runge-Kutta method. The development was done in 
the Microsoft Visual C++ 6.0 environment for both the 
execution module and the graphical interfacing. For 
the visualization of simulation results the following 
options have been included in the analysis module: the 
time evolution of several spike trains (the synaptic 
inputs, the motoneurons, the Renshaw cells); 
interspike interval histogram, spike rate versus time, 
membrane potential of a selected neuron; muscle 
force versus time. For a more refined signal 
processing or statistical analysis, the user may save 



files in ASCII format of firing times, force and 
membrane potential.  

 
 

RESULTS AND DISCUSSION 
 
 

An example of a dialogue display used by the 
simulator during the network configuration phase in 
shown in Fig.3. The types and parameters of the 
desired synaptic inputs may be programmed using this 
screen. In the other screens, the user may modify the 
default parameter values of the MNs, RCs and muscle 
fibers.  

 

 
 

Fig. 3 – A configuration menu. The user may deselect 
any of the synaptic inputs and set parameter values for 
those selected. 

 
After setting all desired parameter values and 

running the network, the user may choose different 
ways to show the results. Fig. 4 is an example of a 
graphical output, where the muscle force and the firing 
times of several motoneurons from the pool are 
shown. In this particular simulation the synaptic inputs 
to the 272 MNs were i an equivalent cortico-spinal 
Poisson spike train at 1000/s, ii the set of Renshaw 
cells and iii lowpass synaptic noise with cutoff 
frequency 44 Hz and 10 nA standard deviation. The 
RCs were run with the bursting model. This simulation 
used a step size of 0.05 ms and took about 3 min to 
run on a personal computer with 512 MB RAM and an 
Athlon XP 2400 processor (2 GHz clock).  

The simulator has proved to be very user-
friendly so researchers from the biomedical sciences 
should be able to use it with ease. The simulator is 
expected to be a helpful tool in theoretical and 
experimental studies on the neurophysiology of motor 
control. In particular, neurophysiological experiments 
on human motor control usually raise several 
hypotheses, which are not easy to test, due to the 
noninvasive character of the experiments. In such 
cases simulation experiments may be able to select 
the most probable hypothesis. 
 

 
  
Fig. 4 – Force (gram-force) as a function of time (ms) 
and discharges of several MNs, each discharge 
indicated by a small vertical bar. 
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