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INTRODUCTION 

Upper limb amputations significantly 
affect everyday activities and pose many 
functional limitations for individuals. 
Prostheses are often prescribed to help 
reduce these limitations and improve the 
individual’s quality of life. Myoelectric 
controlled prostheses are currently being 
researched the most as they possess the 
most potential to improve an amputee's 
quality of life1. Current designs often use 
agonist and antagonist myoelectric signals 
(MES)2 as inputs for the prosthetic limb’s 
control system. This control scheme limits 
the number of movements that can be 
actuated by the prosthesis. As a result, 
numerous research groups have focused 
on both increasing the functionality of the 
prosthetic limb and assessing the clinical 
impact of multifunction control systems.  

Due to advancements in technology and 
signal acquisition, pattern recognition is 
now deemed a viable option to increase 
the capabilities of the prosthetic limb. 
Pattern recognition incorporates the use of 
mathematical algorithms based on MES 
data. This application is capable of 
distinguishing different electrical patterns 
produced by multiple MES, which then 
actuate the desired prosthesis’ 
movement3,4. The efficiency of myoelectric 
controlled prostheses are often assessed 
by calculating classification accuracies, i.e. 
how often a prosthesis is capable of 
performing the correct motion an 
individual is trying to produce. It is often 
difficult, however, to determine the 

relationship between the MES and 
prosthesis movements. This can be 
attributed to the input/output disconnect 
that is caused by the complex pattern 
recognition algorithm, i.e. the relationship 
is not linear. It is possible that this lack of 
a relationship between the two may be 
alleviated with a higher resolution of MES 
data which can be captured with the use 
of a high density electromyography (HD-
EMG) system5. The purpose of this study 
was to collect preliminary data from both 
able-bodied participants and those with 
transradial (below elbow) amputations to 
further investigate the possible 
relationship between HD-EMG data and 
classification accuracy of the prosthetic 
limb. This data would lead to further 
investigations into the similarities and 
differences of muscle activation patterns 
between able-bodied individuals and 
transradial amputees. This topic is 
important to consider as many prosthesis 
control schemes are based on able-bodied 
individuals muscle activation patterns 
rather than the individuals who wear the 
devices. The work presented in this paper 
details the experimental protocol while 
also highlighting some of the preliminary 
results from this ongoing work. 

METHODS 

Subjects 

Twenty able-bodied individuals 
between the ages of 20-60 were recruited 
to participate in this study. Two congenital 
amputees and one traumatic amputee 



have also participated, and depending on 
availability, two more transradial 
amputees will be recruited for this study 
(data collection is ongoing). Traumatic 
and congenital amputee participants are 
being recruited from the Institute of 
Biomedical Engineering at the University 
of New Brunswick. This project has been 
approved by the Research Ethics Board at 
the University of New Brunswick and is on 
file as REB 2012-132. 

Instrumentation 

A High Density EMG system (REFA 128 
model, TMS International, REFA, 
Oldenzaal, The Netherlands) was used for 
this study’s data collection. The HD-EMG 
system can measure up to 128 channels 
of monopolar EMG. A sampling frequency 
of 2000 Hz was used (TMSI User Manual). 
The electrophysiological variables are 
transferred via an optical fibre interface 
that communicates the signal to the PC. 
Signal filtering was performed using a 60-
Hz notch filter to eliminate noise.  

Electrode Placement 

In this study, up to 64 HD-EMG 
electrodes were placed on the forearms of 
participants. An 8 by 8 grid was used on 
able-bodied individuals with the ground 
electrode located on C7 of the spine. The 
number of electrodes and the method of 
placement fluctuated for each participant 
as the length and proportions of their 
limbs varied.  

The dimensions of the electrode grids 
were determined by measuring the 
circumference of the apex of the elbow 
and subsequently calculating the correct 
inter-electrode distance to allow the 
spacing between electrodes to be evenly 
spaced. The first electrode was placed at 
the proximal end of the elbow in the 
middle of the anterior side. Electrodes 
were then placed lateral to medial around 
the arm to generate the first row, which 
consisted of electrodes 1 to 8. The second 
row of electrodes, containing electrodes 9 
to 16, were then placed distally to the first 
using the same lateral to medial 

orientation.  The distance between rows 
was evenly distributed based on the 
length of the forearm or residual limb. The 
remaining six rows (3 to 8) followed the 
same procedure. Figure 1 provides an 
overview of the electrode placement.    

 
Data Collection 

Prior to electrode placement, 
participants were instructed on the 
purpose of the study and were given time 
to familiarize themselves with the 5 
motions being used to evaluate the 
hypotheses. The motions of interest 
included: rest, closed hand, open hand, 
wrist pronation, and wrist supination. 
These motions were chosen because they 
have been used in previous research and 
are common movements used by upper 
limb prostheses6,7. Furthermore, a 
research occupational therapist, who 
works regularly with amputee patients, as 
well as the investigators involved with this 
research project have determined that 
these five motions display unique muscle 
activation patterns necessary to 
investigate the primary hypotheses. These 
motions were performed at three distinct 
contraction force levels (CFL): defined as 
a specific percentage of a participant’s 
perceived subjective maximum force 
capability. The subjects were asked to 
produce contractions that reflected 20 – 
40% of their maximum voluntary 
contraction (MVC) for a low CFL, between 

	
  

Figure 1: Anterior view of forearm (finger 
pointing at electrode 1)	
  	
  



40 – 60% MVC for a medium CFL and 
greater than 60% MVC for a high CFL.  

Participants performed one trial of twelve 
3 second contractions for each of the five 
motions, totalling 60 contractions. Of the 
twelve 3 second contractions within each 
motion, half were performed at the 
medium CFL level and the other half were 
divided into soft and hard CFL. More trials 
of medium contractions were needed 
because half of the medium contractions 
were used to train the LDA classifier being 
used8 and the other half to test the 
medium CFL contractions. Participants 
were given approximately 15 to 20 
seconds of rest between contractions. 
Amputee participants followed the same 
protocol as the able-bodied individuals, 
with the exception that breaks were 
necessary to avoid mental and physical 
fatigue, as well as to avoid cramping in 
their residual limb. Any deviations from 
the protocol were noted. The order for 
determining what CFL and what motion to 
perform was randomized. 

PRELIMINARY RESULTS 

EMG amplitudes were quantified using 
a root mean square (RMS) analysis. The 
results from the RMS analysis were then 
used to develop muscle activity maps in 
MATLAB. These activity maps use colour 
to indicate areas of high and low activity, 
with red areas indicating areas of high 
MES activity and blue areas indicated low 
areas of MES activity. An activity map 
from one able-body individual 
representing the three contraction force 
levels for the hand open motion are 
presented in Figure 2 and represent the 
average muscle activation pattern 
produced from three trials. These color 
maps provide a condensed visual 
representation of the trial data collected 
from the HD-EMG system. The preliminary 
data shows the quality of the data and 
indicates the areas of high muscle activity 
compared with low activity, and it can be 
seen that these areas change with 

increasing force levels. While limited in 
sample size, the preliminary data from 
those with amputations suggest similar 
pattern changes in the activity maps. 

 

Figure 2: Hand open activity 
colormaps (A. hard contraction, 
posterior and anterior view; B. medium 
contraction, posterior and anterior view; 
C. soft contraction, posterior and anterior 
view)
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CONCLUSION 

This paper presented the ongoing 
development effort to quantify the 
relationship between the high density EMG 
distributions within targeted muscle 
regions and classification accuracies for 
both able-bodied and transradial amputee 
participants.  Work is currently ongoing to 
complete the data collections with 
transradial amputees and to investigate 
pattern variations in the HD-EMG data.  
Once completed, the results will lead to a 
better understanding of how variations in 
the elicited muscle contractions affect 
classification accuracy and whether these 
relationships are similar for both the able-
bodied and transradial amputee 
population. 
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