
CMBEC 36 / APIBQ 42 21-24 May, 2013

CALIBRATION INTERFACE FOR THE ELECTRONIC SWIM COACH

A.R.M. Amos-Binks and J. R. Green

Department of Systems and Computer Engineering
Carleton University, Ottawa, Canada

INTRODUCTION

The overhead required to learn to swim with

a severe visual impairment is much lower than

learning other sports. The most popular system

currently in place to assist visually impaired

swimmers requires a coach to stand at either

end of a pool lane and tap the swimmer on the

head when they reach the location where they

should begin their turn. This proves problematic

since two volunteers are needed and constant

attention to the swimmer is required by both

volunteers to prevent collisions with the pool

deck. Furthermore, there is no effective means

to prevent the swimmer from veering laterally

into other swimming lanes.

We here report significant improvements to

a prototype electronic swim coach [1] for

visually impaired swimmers being developed in

our lab. This system tracks the swimmer in a

lane through a webcam connected to a

computer using image processing techniques

and then notifies the swimmer if they are

veering or approaching the end of the lane

through a wireless communication component

connected to the computer.

The previous electronic swim coach had a

rudimentary Graphical User Interface (GUI)

that was designed for a developer to test the

functionality of the image processing and

wireless communication components [1].

Furthermore, although the functional

components work well, they were very tightly

coupled to the testing GUI, which made

improving the interface and reusing the image

processing components for future

improvements very complicated and time

consuming.

BACKGROUND

Previous development of the electronic

swim coach system has focused on three major

components: the software which performs

image processing, the wireless communication

system, and the swimmer notification system.

The software communicates via a wireless

transmitter (TLP434A) attached to a micro-

controller chip (Arduino ATmega328) which

receives commands over a USB connection.

After the swimmer location and state is

determined, the appropriate wireless command

is then encoded and sent to a wireless receiver

(RLP434) and microcontroller (Arduino

ATmega328) in the swimmer's swim cap. The

wireless command is then decoded and the

necessary vibrational motors in the swimmer's

swim cap are activated.

A fourth required component is the coach’s

calibration interface that will run on a tablet PC

connected to the webcam at one end of the

pool lane. This interface is required for several

purposes: 1) before the swimmer begins

swimming independently, the system must be

calibrated to identify the pool and lane

boundaries, 2) the system must be provided

with a description of the swimmer’s cap colour,

3) the coach requires a means to verify the

operation of the wireless channel by sending

test messages, 4) the coach should observe the

system’s tracking performance during a test lap

to ensure that it is able to identify the swimmer

at all points in the pool lane as lighting varies

with position.

We here report on the development of a

coach’s calibration graphical user interface.

Figure 1 shows the overall system in detail with

the addition of the newly designed GUI.

As a secondary contribution, the software

has been completely restructured since the

software model used in the previous prototype

tightly coupled the user interface with the

program’s functionality, which made future

usability of software components complicated.

CMBEC 36 / APIBQ 42 21-24 May, 2013

Figure 1 - System Diagram

As an object oriented language, Java lends

itself well to GUI design. Object oriented GUIs

are easier to develop and organize. The ability

to create objects in Java helps in decoupling the

function library from the user interface which

will assist in code reuse in the further

development of this project.

Object oriented applications can be

designed in a number of complex patterns. In

order to introduce some structure and facilitate

future code reuse, a commonly used design

pattern called Model-View-Controller (MVC) was

used. The MVC design pattern separates the

GUI (i.e. the view) from the model. The view

portion is programmed to visualize the data,

while the model does all the data processing.

This creates a much simpler program which is

easier to implement and reuse for future

programmers [2].

The image processing component of the

electronic swim coach requires an extensive

library of standard computer vision functions.

The OpenCV project [3] was used as it provides

open source implementations, in C++, of all

functions needed for this project. Since the

electronic swim coach was ported to a Java

environment, the OpenCV C++ functions need

to be called through an open source wrapper

library, JavaCV. The JavaCV library provides the

optimized functionality of the OpenCV library

through standard Java object method calls [4].

METHODS

Two main goals of this project were adding

a GUI designed for the target audience and

creating a more efficient software model.

GUI Design

In the previous version of the electronic

swim coach, each step in the system calibration

process produced a separate popup window.

Considering that the system is intended to be

used by a swimming coach in a busy

environment, it was important to simplify the

user interface as much as possible. Therefore,

the project was converted to have one window

containing the lane image with menus along the

bottom and right-hand side.

The newly designed GUI has incorporated

automatic corner detection using the method

described in [5]. The previous version had the

user select the corners manually by clicking on

an image of the lane. The user could not

correct his/her selection without restarting the

application. In the new GUI, corners are initially

estimated automatically. The user is presented

with the four estimates which can be dragged

into place to allow the coach to refine the

results of the automatic corner detector and

provide the desired lane boundaries. This

feature provides a more natural feel and will be

useful when moving to a touch screen interface.

The second step in the system calibration

requires the swimmer’s cap to be manually

selected in an initial image since the system

tracks the swimmer’s location based on the

colour of his/her swim cap. The image is then

converted from RGB colour space to hue-

saturation-value (HSV) colour space, which

facilitates isolation of a specific colour

independent of the amount of white light and

reflection in the image. For the hue channel in

the HSV image, the mean of the full data is not

used, only the middle 50% of the data around

the mean. This eliminates outlier pixels and

results in a more accurate initial threshold. The

user can also adjust the threshold using track

bars that appear along the right side of the

application window.

CMBEC 36 / APIBQ 42 21-24 May, 2013

Since it is desirable to know lap splits and

swim time, a real time lap split/swim time table

has been added to the bottom of the GUI

screen, shown in Figure 2. The time table

automatically detects changes in direction from

the swimmer then records the lap time and

updates the overall swim time.

Software Model

The move from C++ to Java offered the

opportunity to create a calibration interface

built on a library of customized image

processing functions that can be easily

extended to other platforms. Extensibility and

ease of development were the main motivations

behind the move from Microsoft MFC C++

classes to a Java system that would ease the

development of a future system on other

platforms. To increase the organization of the

software, the MVC design pattern was used.

The project has been extended to have one

centralized data processing model that contains

all image data and performs all data

processing. This centralized model can then be

called by any view designed for the user. The

two views used in this case were a calibration

view, used to calibrate the system, and also the

real-time swimmer tracking view. Since both

these views are relatively simple, the controller

functions were integrated into their design. This

centralized library of functions can be reused to

design new applications or extended to add

functionality.

Wireless Communication

The original electronic swim coach had a

well-designed wireless notification system that

communicated over a 434MHz frequency band.

To communicate with the swimmer, different

commands are written to a USB port. From the

USB port these commands are then encoded

using Manchester encoding with a long

preamble. Manchester encoding uses bit

transitions: a logical one is a transition from a

digital zero to a one and the reverse is true for

a zero. The preamble is the stream of bits that

unambiguously establishes the start of a

command. To transmit a command, Java writes

an ASCII character to the USB port. This

command is then converted to the appropriate

Manchester encoding and transmitted via the

Arduino chip[1].

Unfortunately, writing to communication

ports is not supported in standard versions of

Java. To implement the wireless system as is,

an open source java library from [6] was used.

This library allows commands to be written to

the com port through Java object method calls.

Figure 2 - Electronic Swim Coach GUI

CMBEC 36 / APIBQ 42 21-24 May, 2013

RESULTS

The recording button shown in Figure 2

cannot be pressed until all the setup tasks have

been completed. Once each lap is finished the

split and swim time will be updated.

 The pool dimensions are then entered in

order to perform homography of the pool image

needed to accurately track the swimmer. This

eliminates the ‘keystone’ effect due to

perspective. The swim cap is then selected and

thresholded. At this point, the coach conducts a

wireless communication test where a known

pattern is sent to the swimmer. Once these

setup tasks are complete the swimmer can then

be tracked. During swimmer tracking, the same

GUI appears however a different view is used.

In order to verify the increased ease of use

of the GUI, eighteen individuals tested and

compared the old system GUI to the newly

designed GUI. Individuals tested were not

necessarily swim coaches since the goal of this

interface is to be usable by the general public.

Two times were recorded for each participant,

the time spent before s/he clicked a button and

the time it took to complete the setup

procedure successfully. Nine participants

started with the calibration of the old GUI and

nine started with the calibration of the new

GUI.

Of the eighteen people surveyed four were

unable to complete the calibration process on

the old system and one did not complete it on

the new system.

The mean calibration time for users on the

old GUI was 138 seconds with a standard

deviation of 13.75 seconds. The mean

calibration time on the new GUI was 119

seconds with a standard deviation of 12.8

seconds. This indicates that the new GUI is

more intuitive and facilitates a faster calibration

process particularly for first time users.

The ability to correct the corner values was

used by all users in the survey. These results

indicate that the new GUI was more user-

friendly as well as extending the functionality

by adding the ability for coaches to

automatically record swimmer’s lap and swim

time.

CONCLUSION

The new GUI was successful making the

electronic swim coach more intuitive and easier

for non-technical users to calibrate.

Moving the electronic swim coach project

from C++ to Java and employing the MVC

design pattern has resulted in a more robust

and versatile application that facilitates code

reuse and further application.

In future, implementations on a touch-

screen tablet, implementing a security system

for swimmer data and improving the

functionality to allow real time feedback from

the coach to the swimmer are possible further

improvements.

ACKNOWLEDGEMENTS

This work has been partially supported by

the Kiwanis Medical Foundation. We would like

to thank the previous students who worked on

this project: Ramzi Marjaba, Catalin Patulea,

Trevor Gelowski, Jaclyn Baldwin, David

Galarneau, Adam Jones, Alexa Loiskandl,

Abhilash Narra, Myna Moharib, Hugo Vihvelin,

and Davide Agnello. Dr. Andrew Marble has

consulted and assisted in many stages of this

project. Finally we would like thank all

volunteer participants and Miss Lucy Barnes for

her contributions.

REFERENCES

[1] A. Narra, M. Moharib, and H. Vihvelin,
“Development of a Low-Profile Electronic
Notification System for Visually Impaired
Swimmers,” Ottawa, 2011.

[2] S. J. Metsker and W. C. Wake, Design Patterns
in Java. Addison-Wesley Professional, 2006.

[3] I. Culjak, D. Abram, and T. Pribanic, “A brief
introduction to OpenCV,” MIPRO, 2012
Proceedings of the 35th International
Convention, pp. 1725–1730, 2012.

[4] S. Audet, “Java CV.” [Online]. Available:
http://code.google.com/p/javacv/. [Accessed:
07-Feb-2013].

[5] C. Harris and M. Stephens, “A combined corner
and edge detector,” Alvey vision conference,
pp. 147–152, 1988.

[6] “RXTX,” 2008. [Online]. Available:
http://rxtx.qbang.org/wiki/index.php/Main_Page.
[Accessed: 07-Feb-2013].

