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Abstract: Image reconstruction is an inverse problem which
can be formulated using quadratic objective functionals
(Least Square fittings or L2 norms) and absolute values sum-
mations (L1 norms). The L1 and L2 norms can be inde-
pendently applied over the data mismatch and the regular-
ization terms (image term) of an inverse problem. In this
manuscript, we investigate weighted L1 and L2 norms in
constituting a general inverse problem and reconstruct im-
age using Primal-Dual Interior Point Method (PDIPM). We
propose a generalized inverse problem to independently mix
the smooth properties of the L2 norm based objective func-
tionals with the blocky effect of the L1 norm based objec-
tive functionals on a element by element basis through a
weighting strategy. In our implementation, we use Electrical
Impedance Tomography (EIT) as an instance of ill-posed,
non-linear inverse problem. We investigate the effectiveness
of different combinations of weighted L2 and L1 norms in
dealing with measurement uncertainties, such as measure-
ment noise and data outliers, using both EIT simulated data,
and EIT human lung data. The simulated data is produced
for a 2D circular phantom and EIT conductivity images are
reconstructed. The first clinical results of applying weighted
L1 and L2 norms to reconstruct image of EIT lung data us-
ing a 2D thorax-shape mesh are reported.

1 Introduction
Inverse problem is to infer unknown or hard to determined
parameters of a system from experimental observations or
data points. The unknown system parameters define the
properties of the system and are not directly measurable.
The experimental observations are easily measurable and
their values depend on the value of the unknown parameters
through a linear or non-linear relationship, depending on the
physical laws governing the system. Forward model is the
linear or non-linear relationship that link the system param-
eters to the measured data or observations. Three source of
information are needed to solve an inverse problem: 1) the
forward model, 2) the observed data (d), defined on the data
space D , 3) the priori information about the unknown sys-

tem parameters (m), defined on the model space M . The
latter is the most important source of information which is
usually hard to determine. An accurate selection of prior in-
formation about the unknown system parameters highly sta-
bilizes the inversion solution. In this manuscript, we aim to
discuss a broader perspective of the possible deterministic
inverse problems through proposing a generalized inverse
problem solved by the PDIPM framework. We propose a
generalized inverse problem which mixes the L1 norms and
the L2 norms on both the data and the regularization terms
of an inverse problem. To reach to the maximum generality,
the norms are weighted to enclose the maximum number of
possible categories of inverse problems. In the following,
we discuss our proposed generalized inverse problem with
weighted L1 and L2 norms.

2 Generalized inverse problem with
weighted L1 and L2 norms

In this section, We formulate a general solution for a gen-
eral inverse problem using PDIPM framework. A general
primal minimization problem can be written as set of error
functions as follows

(P ) = argmin{ζ
D1∑
i=1

|fdi(m)|+ η

D2∑
j=1

|fpj (m)|+

(1-ζ) ‖gd(m)‖2 +(1− η) ‖gp(m)‖2}; (1)
where ζ and η are weighting variables in the range [0, 1].
fd(m) is a L1 norm based data mismatch term, fp(m) is
a L1 norm based regularization term, gd(m) is a L2 norm
based data mismatch term, and gp(m) is a L2 norm based
regularization term. A primal minimization problem can be
formed through any combination of the error terms defined
in (1). In the following, the general solution for the general
primal problem in (1) is derived using PDIPM framework.

The dual problem can be written as

(D) = argmin
m
{maxxd

[ζxTd fd(m)]+maxxp
[ηxTp fp(m)]+
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(1-ζ)‖gd(m)‖2 + (1 − η)‖gp(m)‖2}; |xd| ≤ 1, |xp| ≤
1(2)
the following objective functions can be considered:
fd(m) = W (h(m)− d), fp(m) = L (m−m0), gd(m) =
W (h(m) − d), gp(m) = α L(m −m0). α is the regular-
ization parameter, W is a weighting diagonal matrix, h(m)
is the forward measurement, d is the measured data, L is the
regularization matrix, m is the model parameter distribution
or the primal variables, m0 is a reference model parameter
distribution. The smoothed PDIPM framework can be for-
mulated as

Cd(m) = fdi(m)− xdi
√
fdi(m)2 + β = 0, ∀i (3)

Cp(m) = fpj (m)− xpj
√
fpj (m)2 + β = 0, ∀j (4)

|xdi | ≤ 1, |xpj | ≤ 1 (5)

Fc(m) = ζ
∂

∂m
(fd(m))xd + η

∂

∂m
(fp(m))xp+

(1-ζ) ∂
∂m (‖gd(m)‖2) + (1− η) ∂

∂m (‖gp(m)‖2) = 0(6)
the derived general PD framework above is solved iteratively
using an iterative method, such as Newton method, and β
decreases from points away from the region defined by the
boundary ‖xdi‖ ≤ 1 and ‖xpj‖ ≤ 1 at every iteration, which
is the notion of interior point methods. The Newton system
to be iteratively solved to calculate the updates for the pri-
mal variables (m) and the dual variables (xd and xp) can be
written as

∂
δmFc(m) ∂

δxd
Fc(m) ∂

δxp
Fc(m)

∂
δmCd(m) ∂

δxd
Cd(m) ∂

δxp
Cd(m)

∂
δmCp(m) ∂

δxd
Cp(m) ∂

δxp
Cp(m)


 δm
δxd
δxp

 =

-

 Fc(m)

fd(m)− (
√
fd(m)2 + β)xd

fp(m)− (
√
fp(m)2 + β)xp

 (7)

we define fd = fp = f = h(m) − d, F = diag(f),
X = diag(x), κ =

√
f2 + β, E = diag(κ).gd =

gp = g = L(m − m0), G = diag(g), Y = diag(y),
s =

√
(L(m−m0))2 + β, S = diag(s). Replacing the

defined objective functions into (7), we obtain 2(1− ζ)JTWTWJ + 2(1− η)αLTL ζJTW ηαL
(I −XE−1F )J −E 0
(I − Y S−1G)L 0 −S


×

 δm
δxd
δxp

 = −

 Fc(m)
f − Exd
g − Sxp

 (8)

where matrix J is the sensitivity matrix. The primal vari-
ables (m) are updated in every iteration through a line
search procedure which is written as m(k+1) = m(k) +
λmδm

(k), where k is the iteration number, δm is the up-
date value with a descend direction to the optimal point,
and λ is the step length [2]. In a similar manner, the
dual variables (xd and xp) are also updated in every iter-
ation. However, the direction of updates in the dual vari-
ables can be changed for different value of β at every it-
eration and may not be always ascending. Therefore, a

line search procedure is not an appropriate method to up-
date the dual variables. scaling rule is proposed to up-
date the dual variables as follows [1]: x(k+1) = x(k) +
min (1, ϕ∗) δx(k), where ϕ∗ is a scalar value such that ϕ∗ =

sup
{
ϕ :
∣∣∣x(k)i + ϕ δx

(k)
i

∣∣∣ ≤ 1, i = 1, . . . , n
}

.

3 Experimental data
Electrical Impedance Tomography (EIT) is applied to recon-
struct a conductivity distribution image of a 2D medium us-
ing the injection of electrical current into the medium and
the collection of the resulting difference voltages across the
electrodes attached to the boundary of the medium. We sim-
ulated EIT difference imaging with 16 electrodes with adja-
cent current stimulation pattern on one electrode plane dis-
cretized using a 2D circular finite element model (FEM) for
the simulated data. A 2D human thorax-shape mesh was ap-
plied for the clinical data.

3.1 Simulated data
Figure 1 (a) shows the used 2D phantom to generate sim-
ulated data with 1024 mesh elements. The phantom con-
tains two sharp inclusions with the two different conductiv-
ity values (0.9 S/m for the upper object and 1.1 S/m for
the lower). The background conductivity value is 1 S/m.
The inverse problem used the mesh density of 576 elements,
which was different than the mesh density of the forward
problem (1024 elements). The performance of the proposed
generalized PDIPM for different weighting parameters was
assessed based on two measurement conditions: 1) To ac-
count for the systematic errors and measurement noise of
EIT data acquisition system, a zero mean Gaussian noise
was added to EIT simulated data to produce a signal to noise
ratio (SNR) of 60 dB, 2) To simulate the electrode error,
caused due to electrode movement and electrode malfunc-
tion, a measurement failure rate of 0.5% was introduced,
which means one measurement out of 208 measurements
needed for one EIT frame was missed.

3.2 Clinical data
Clinical data were obtained in the study described by [4, 3].
The data includes human breathing data from eight patients
with healthy lungs (age: 41± 12 years, height: 177± 8 cm,
weight: 76 ± 8 kg, mean ± std.) and eighteen patients (age:
58± 14 years, height 177± 9 cm, weight: 80± 11 kg) with
acute lung injury (ALI). All patients were intubated and me-
chanically ventilated. The experimental procedure consisted
of a low flow inflation pressure-volume maneuver applied by
the respirator (Evita XL, Draeger, Luebeck, Germany), start-
ing at an expiratory pressure of 0 cmH2O and ending when
either a) the gas volume reached 2L, or b) the measured air-
way pressure reached 35 cmH2O. Airway gas flow, pressure
and volume were recorded at a sampling rate of 126 Hz. EIT
data were acquired on sixteen self-adhesive electrodes (Blue
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Sensor L-00-S, Ambu, Ballerup, Denmark), placed at the
5th intercostal space in one transverse plane around the tho-
rax, while a reference electrode was placed on the abdomen.
EIT data were acquired at 25 frames per second, with an ad-
jacent stimulation and measurement protocol, using current
stimulation at 50 kHz and 5 mA.

(a)
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Figure 1: EIT Image reconstruction using the proposed gen-
eralized PDIPM with weighted L1 and L2 norms over EIT
simulated data perturbed by zero mean Gaussian noise (-60
dB). (a) 2D phantom. (b) The reconstructed images with
different weighting parameters ([ζ, η]).

4 Experimental Results
We show the EIT reconstructed images of the proposed
generalized PDIPM framework with different selection of
weighting parameters over both simulated and experimental
data. The inverse solution is calculated using the proposed
generalized PDIPM with β = 1 × 10−12. The stopping
term to terminate the iterations depends on the value of the
primal dual gap computed in every iteration of the PDIPM.
According to our experiments, 10 iterations for the PDIPM
were sufficient to reach to convergence. In our implementa-
tion, sixteen different selection for weighting parameters (ζ
and η) are considered (figure 1(b)-4). The weighting matrix
for ζ and η are selected as [0, 0.3, 0.6, 1] ,including small,
medium, and large weighting values. For every selection
of weighting combination, the hyperparameter α was tuned
up using L-Curve method [5]. Figure 1(b) shows the re-
sults over EIT simulated data when perturbed by a zero mean
Gaussian noise (-60 dB). In figure 1(b), the upper panel on
the left corner shows the result of solving the traditional
L2L2 problem where [ζ, η] = [0, 0]. The lower panel on
the left corner is the solution of the L1L2 problem where
[ζ, η] = [1, 0]. The upper panel on the right corner repre-
sents the solution of the L2L1 problem; and the lower panel
on the right corner shows the conductivity distribution image
for the L1L1 problem. As it can be seen in figure 1(b), the
reconstruction quality drops in the presence of added noise
(-60 dB). Adding a Gaussian noise to EIT data, the recon-
structed images with η = 0 (column 1 in figure 1(b)) be-
come blurry and their image quality is dropped. The recon-
structed images with larger weighting parameters (columns
2-4 in figure 1(b)) offer slightly higher robustness against the
added noise and still provide sharp edges, as weights of the
L1 norms and their contributions in the solution becomes
higher from one column to another. A more challenging
measurement condition was tested by adding noise (-60 dB)

and data outliers, where one measurement out of 208 was
missed, to the EIT simulated data.
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Figure 2: EIT Image reconstruction using the proposed gen-
eralized PDIPM with weighted L1 and L2 norms over EIT
simulated data perturbed by zero mean Gaussian noise (-60
dB) and strong data outliers.

Figure 2 shows the reconstructed images for noise and
data outliers test scenario. The weighting selection of either
ζ = 0 (row 1 in figure 2) or η = 0 (column 1 in figure 2)
does not tolerate the imposed noise and outliers. However,
the reconstructed images with weighting parameters larger
than 0.3 offer higher robustness against noise and outliers.

[ζ, η] = [0.3, 0]
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Figure 3: Clinical results of applying the proposed general-
ized PDIPM with weighted L1 and L2 norms over EIT lung
data achieved from a patient with healthy lungs.

Moreover, we show the first clinical results of applying
weighted L1 and L2 norms over EIT lung data achieved for
a patient with healthy lungs and a patient with acute lung
injury (ALI). Positive end-expiratory pressure (PEEP) was
applied on 7 patients with healthy lungs and 18 patients with
ALI [4]. EIT lung data was acquired during the PEEP trial.
Figure 3 represents difference EIT with the proposed gen-
eralized PDIPM framework when applied to EIT lung data
frame taken at the maximum airway pressure (35 cmH2O)
of the PEEP trial for a patient with healthy lungs (patient
numbered 7 in our data base). The reconstructed images
in figure 3 correctly show that the dependent lung areas are
filled by air for both the right and left lungs, which is ex-
pected at the highest pressure of PEEP trial. The L2 norm
based solution, located at the upper panel on the left corner
in figure 3, is in fact the traditional Gauss-Newton method,
where [ζ, η] = [0, 0]. The L2 norms highly smooth out
the solution and therefore create blobby images. This also
shows the high vulnerability of L2 norm based penalty terms
to measurement errors as they overly penalize, by squaring
the mismatch terms, both measurement errors and useful
physiological information. In contrary, the L1 norm based
penalty terms sum up the absolute values of mismatch terms
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and therefore are less prone to measurement errors and cre-
ate sharp images with clear edges. The larger the weighting
parameters, the higher the contribution of the L1 norms in
the inverse solution will be. In figure 3, the reconstructed
images with larger weighting values in the columns 2-4 are
sharper images due to the higher contribution of the L1
norms in the inverse solution. The higher weighting val-
ues for image mismatch terms offer sharper images (row 1
in figure 3); however, the images suffer from data outliers
(artifacts at the thorax boundary), due to having L2 norms
on the data mismatch terms (ζ = 0). The higher weighting
values for data mismatch terms (column 1 in figure 3) pro-
duce robustness against data outliers; however, the images
are smoothed out, due to imposing L2 norms on the image
mismatch terms (η = 0).
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Figure 4: Clinical results of applying the proposed general-
ized PDIPM with weighted L1 and L2 norms over EIT lung
data achieved from a patient with acute lung injury (ALI).

Figure 4 demonstrates the effect of different weighting
parameters (ζ and η) on the reconstructed image from EIT
lung data achieved on the inflation limb of PEEP trial where
the airway pressure reaches to its highest value for a patient
with ALI (patient numbered 18 in our data base). All recon-
structed images clearly show the lungs malfunction due to
a heterogeneous lung disease, which causes collapsed areas
mostly in the lung dependent areas. Also, figure 4 indicates
a decrease in the the lung volume, which is not normal at the
plateau on the inflation limb of the PEEP trial.

5 Discussion
Functional EIT is a non-invasive, inexpensive imaging
modality to image the regional ventilation distribution
for long period of time. Difference EIT monitors lung
impedance changes during ventilation and can be applied as
a tool to help tune up the PEEP level. In this manuscript,
we investigate the first clinical results of applying the gen-
eralized PDIPM with a combination of weighted L1 and L2
norms in producing quality EIT lung image. In clinical set-
ting, there are several sources of errors in EIT data mea-
surement, such as patient movement, sweating, and loose
electrode connection, which create measurement errors. A
reconstruction algorithm with sharp image and low vulnera-
bility to the data outliers is desirable in clinical application
of EIT. The proposed generalized PDIPM with weighted L1
and L2 norms can be applied in EIT clinical application to
reconstruct sharp, quality images. It should be noted that

one of the main difficulty of EIT image reconstruction is
the high dependency of its inverse solution to the hyperpa-
rameter selection. In this study, we used L-curve method
to tune the hyperparameter for every weighting combination
applied in our implementation. However, there exist several
other hyperparameter selection algorithms which could be
investigated instead of L-curve method. Also, we have not
used the available EIT motion compensation algorithms in
our implementation. We expect the reported results in this
manuscript to become less noisy if a motion compensation
algorithm is applied.

6 Conclusion
We derive a generalized PDIPM framework which mixes the
L1 norms and the L2 norms on both the data and the regular-
ization terms of an inverse problem. To reach to the maxi-
mum generality, the norms are weighted to enclose the max-
imum number of possible categories of inverse problems.
The classical inverse problems such as L2L2, L1L2, L2L1,
and L1L1 problems are a sub-domain of the proposed gen-
eralized inverse problem where the weighting factors are se-
lected accordingly. The generalized solution of the proposed
inverse problem is derived using the PDIPM framework.
EIT is selected as an instance of ill-posed non-linear inverse
problem. We discuss the effectiveness of different combina-
tion of weighted norms (L1 and L2 norms) under two differ-
ent measurement conditions on EIT simulated data (added
noise and outliers). We also assess the performance of the
proposed generalized PDIPM on clinical data achieved from
EIT system. We discuss that the achieved clinical results
of the proposed generalized PDIPM are plausible and also
found that the assignment of larger values to the weighting
parameters (ζ and η) is beneficial to produce sharp and less
noisy images in clinical application of EIT for lung imaging.
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