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Abstract: Electrical impedance tomography
(EIT) shows a great promise for monitoring pul-
monary and cardiovascular functions non-invasively.
However, there are some challenges to bring EIT
from the laboratory to daily clinical use in intensive
care unit (ICU). One of the main challenges is the
measurement errors caused by poor contact or de-
tachment of electrodes due to the dynamics of en-
vironment and human body. Such errors create large
image artifacts and may even lead to misleading re-
sults. Thus, there is a need for unsupervised failing
electrode identification and electrode error compen-
sation. We developed a novel formulation to compen-
sate for such errors caused by failing electrodes and
to eliminate image artifacts in real-time. We tested
the error correction algorithms with measurements
acquired on a cylindrical tank filled with a conduc-
tive saline solution. A test object was placed at differ-
ent positions inside the tank using a robotic system.
For each position, several combinations of discon-
nected electrodes were tested. The developed algo-
rithm - evaluated by comparing the known test object
with the reconstructed images - reduced image arti-
facts caused by failing electrodes and thus improved
the robustness of EIT measurements. The results
also demonstrated that the proposed failing electrode
compensation strategy was effective up to 6 discon-
nected electrodes for a 32-electrode EIT system. The
proposed strategy can help to use EIT as a practical
and robust bedside imaging technique for ventilation
monitoring.

1 INTRODUCTION

Electrical impedance tomography (EIT) is a non-
invasive method to image conductivity distributions
within a body from current injection and voltage
measurements made at electrodes attached to the
body’s surface. EIT shows a great promise for mon-
itoring pulmonary and cardiovascular functions non-
invasively. In order to bring EIT from the laboratory
to daily clinical use in an intensive care unit (ICU),
there remain some challenges to be solved. As a med-
ical equipment, EIT needs to fulfill the requirements
of a medical grade instrument including the delivery
of clear and robust information. Due to the dynam-
ics of environment and human body in the ICU, one
of the main challenges in EIT is poor contact or de-
tachment of electrodes, which will create large image
artifacts and may lead to misleading results. Such
failing electrodes lead to unusable measurements and
cause the failure of EIT image reconstruction, since
EIT imaging depends on all electrode data for image
reconstruction.

In the literature, several techniques were proposed
to detect and compensate failing electrode errors.
Adler [1] proposed a method to automatically de-
tect failing electrodes and unreliable measurements
by means of finding single electrodes whose readings
are inconsistent with the rest. Hartinger et al [2] pro-
posed a real-time algorithm to manage failing elec-
trodes based on the reciprocity principle. However,
both techniques are most suitable for retrospective
analysis. Based on the ideas of Adler [1], we propose
a new approach: Prior to the image reconstruction
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step, we use the measured data to identify and com-
pensate errors caused by different patterns of failing
electrodes. The algorithm was developed and tested
using measurements recorded from a cylindrical tank
filled with conductive saline solution. Inside the tank,
a test object was placed at 121 positions while differ-
ent scenarios with disconnected electrodes were ap-
plied.

2 METHODOLOGY

Our goal was to develop fast and unsupervised meth-
ods to identify electrode errors and subsequently
compensate them in real-time. The following gives
a brief outline of our approach:

(i) acquisition of reference and subsequent mea-
surements from an EIT system, which is de-
scribed in the Experimental Setup.

(ii) identification of failing electrodes based on
knowledge of injection and measurement strat-
egy,

(iii) compensation of measurement errors for all af-
fected electrodes by modeling electrode errors
as a priori large measurement noise and incorpo-
rating them into image reconstruction process,

(iv) image reconstruction using clean data to obtain
better image quality.

2.1 Failing Electrode Detection

The failing electrode detection algorithm is based
on the knowledge of the injection and measure-
ment strategy. We used a measurement strategy that
records the voltage on all possible pairs of electrodes
including the injecting ones, which can be used to
estimate the contact impedance. It was experimen-
tally determined that contact impedance values lower
than 400 Ω represent well connected electrodes. The
impedance threshold value and the knowledge of the
injecting pattern allow to identify poorly connected
or detached electrodes from the measured data.

2.2 Failing Electrode Rejection

The data v and image m are related by a physics
model [3], F (·):

v = F (m) ≈ Jm (1)

where J is the sensitivity (or Jacobian) matrix which
linearizes the model at a background (or reference)

conductivity mr, given by:

[J]i,j =
∂[F (mr)]i
∂[mr]j

. (2)

By using a common linear differential reconstruc-
tion algorithm, images of of conductivity changes,
∆m = m−mr, can be calculated. In that algorithm,
the measured voltages v needs to be subtracted by a
reference data set vr (d = v − vr).

∆m = Rd, (3)

As reference, each recorded data set can be chosen.
To compensate electrode errors, we interpolate

data: d̃, created by reconstructing a model m,

∆m = Rd, (4)

and then projecting the data

d̃ = J∆m = JRd, (5)

where R is the reconstruction matrix and d is the
original data with electrode errors. R needs to be op-
timized for given errors.

The reconstruction matrix R can be written as [3]

R = PJT (JPJT + W)−1 (6)

where P = Σx and W = Σn. The matrices Σx and
Σn describe the covariance for the image elements
and measurements respectively. Noise variance is as-
sumed to be equal and independent on each channel,
so Σn = I, which is the identity matrix.

We assume that failing electrodes have high noise,
where the errors can be modeled as a prior large mea-
surement noise and incorporated into the diagonal el-
ements of Σn,

Σn = λ2(I + µEe) (7)

where Ee contains error values that are equal to 1 for
bad data points and 0 otherwise. λ is the regulariza-
tion parameter and µ describes noise to signal ratio.

Thus,

d̃ = JPJT (JPJT + λ2(I + µEe))
−1d. (8)

We can rewrite the portion of the reconstruction
matrix with or without correction respectively as

X∗ = (JPJT + λ2(I + µEe))
−1 (9)

and
X = (JPJT + λ2I)−1. (10)
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We propose a fast and efficient way to calculate
X∗ given X by using a general algorithm based on
the sequence of rank 1 perturbations [6], we obtained

X∗ = X − XT
i Xi(Xii)

−1. (11)

where Xi is a vector for data channel i and Xii is a
diagonal element (of the reconstruction matrix). This
is calculated step by step for all measurement points
affected by a failing electrode.

2.3 Experimental Setup

For our measurements, we used an EIT system (Swis-
stom AG, Switzerland) [4] with 32 electrodes and a
frame rate of 10-50 frames per second. The elec-
trodes were attached in a plane around a cylindri-
cal tank with a circumference of 90 cm and filled
with saline water. As test object, we placed a non-
conductive ball (Polyoxymethylene, POM, diameter
45 mm) inside the tank by using a robotic system.
The ball was placed on points lying on concentric
circles inside the tank with radius 100, 75, 50, 25
and 0 mm. The circles contain 64, 32, 18, 8 or 1
equally spaced measurement positions respectively.
This leads to a total 121 different object positions.
Additionally, reference measurements (vr) with no
ball inside the tank were taken. For the analysis in
this paper, we restricted the measurement positions
to 8 equally-spaced points lying on the circle with
radius 75 mm. For each position, several failing-
electrode patterns were applied before measuring,
which included 1, 2, 3 and 6 disconnected electrodes.

2.4 Data Processing

We carried out tests and data analysis in MATLAB
(Mathworks, Natick, MA) and EIDORS 3.6 [5]. We
used the GREIT image reconstruction algorithm [5]
with standard settings (NF = 0.5, [3]). The for-
ward model used for GREIT is a 3D-FE model of the
tank, as described in the previous section. For the
case of no failing electrodes, a reconstruction matrix
was pre-calculated using the GREIT algorithm. For
each case of failing electrodes, we used eq. (7) −
(10) to adapt this matrix.

The used EIT system showed an amplifier satura-
tion such that if an electrode failed, the next neigh-
boring electrode was also affected due to current in-
jection from neighboring electrodes. This system

specific issue increased the number of total affected
electrodes. All measurements except the affected
measurements from the failing electrode and its next
neighbor electrode with injecting current were con-
sidered. This used more of the measurement data.
We called the neighboring case full comp, while
the compensation of the failing electrodes only was
called part-comp.

3 RESULTS
Sample reconstructed images from the failing elec-
trode study are presented in Fig. 1. These images
are based on the measurement data of only 8 object
positions with 1, 2, 3 or 6 failing (disconnected) elec-
trodes. To reconstruct the images, the algorithm was
extended with different compensation strategies. For
all failing electrode cases, the reconstruction failed
to produce proper images when no compensation
was performed (no-comp). Since the failing elec-
trodes were detached and kept open, they have ran-
dom noise values, and thus the reconstructed images
varied in different cases and image artifacts were not
proportional to failing electrodes. Image artifacts
are reduced considerably after applying compensa-
tion for the failing electrodes (part-comp) only. Fi-
nally, we successfully compensated the failing elec-
trode as well as the affected neighboring (current
injection) electrodes (full-comp), where the image
quality dropped gradually for the increased number
of failing electrodes due to the reduced number of
measurements.

4 DISCUSSION

We proposed strategies for compensating electrode
errors to reduce image artifacts. In all our analy-
sis, the electrode error compensation strategies kept
the EIT system functioning properly in the presence
of up to 6 failing electrodes and improved the im-
age quality considerably. The approach also allows
fast processing. In this study, the failing of 6 elec-
trodes resulted in a loss of 8 measurement/injecting
pairs due to the distribution pattern of the failing elec-
trodes. If distributed in another pattern, this may end
in a loss of up to 12 pairs. Further clinical stud-
ies are needed (with human subjects) to improve the
proposed compensating strategy for multiple failing
electrodes, i.e. by using adaptive injection patterns.
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Figure 1: Reconstructed images based on different compensating strategies for failing electrodes: (a) 1
failing electrode, (b) 2 failing electrodes, (c) 3 failing electrodes, (d) 6 failing electrodes. obj-pos stands for
real object position, no-comp is for no compensation, part-comp is for electrode error compensation, full-
comp is for compensating electrode errors and additionally the errors from next (current injection) electrode.

For the practical application of EIT, patient move-
ment and poorly contacting electrodes are unavoid-
able. The image artifacts or failure of the image re-
construction caused by them may lead to misleading
visual results and subsequent faulty diagnosis. The
proposed approach can identify and compensate elec-
trode errors in real-time. Thus, the method improves
the stability of EIT measurements, and increases the
efficiency and reliability of an EIT system especially
for long term bedside monitoring of patients.

ACKNOWLEDGEMENTS
This work was funded partly by the Swisstom AG
(Landquart, Switzerland). P. Gaggero was supported
by the Swiss Commission for Technology and Inno-
vation (CTI Medtech Project No. 12888.1 VOUCH-
LS). B. Grychtol was supported by a research fellow-
ship from the Alexander von Humboldt Foundation.

References

[1] A. Adler, “Accounting for erroneous electrode
data in electrical impedance tomography,” Phys-
iol. Meas., vol. 25, no. 1, pp. 227-238, 2004.

[2] A. E. Hartinger et al, “Real-time management of
faulty electrodes in electrical impedance tomog-
raphy,” IEEE Trans. Biomed. Eng., vol. 56, no. 2,
pp. 369-377, 2009.

[3] A. Adler and R. Guardo, “Electrical impedance
tomography: regularised imaging and contrast
detection,” IEEE Trans. Med. Imaging, vol. 15,
pp. 170–179, 1996.

[4] P. Gaggero et al, “Electrical impedance tomogra-
phy system based on active electrodes,” Physiol.
Meas., 33:831847, 2012.

[5] A. Adler and W.R. Lionheart, “Uses and abuses
of EIDORS: An extensible software base for
EIT,” Physiol. Meas. 27:S25-S42, 2006.
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