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Abstract: Level Set (LS) technique is shown to be an ef-
fective regularization technique in non-linear inverse prob-
lems because of its topological based representation of un-
known structures using level zero (a front) of a higher di-
mension function (level set function). The representation of
structures using the level set function is of great use to ad-
dress the need of image reconstruction from ill-posed inverse
problem containing limited set of available data and prior
information. The cost functional of the classical LSRM is
based on the quadratic formulations (least squares fitting or
L2 norms) of data mismatch and regularization terms. How-
ever, the L2 norm optimization problems are not robust to
outliers and measurement noise. To achieve a high robust-
ness against outliers and noise, a general inverse problem
can be formulated in terms of the L1 norms or a combina-
tion of the L1 norms and the L2 norms, instead of merely
usage of the L2 norms. In this paper, we derive a novel LS
based regularization method (LSRM) which allows any pos-
sible combinations of the L1 and the L2 norms on the inverse
problem terms. To show the implementation of the derived
LSRM, we use an ill-posed inverse problem called Electrical
Impedance Tomography (EIT). The image reconstruction re-
sults of the proposed LSRM are compared to those of four
state of the art regularization methods: Gauss-Newton (GN)
with Tikhonov regularization term, GN with NOSER algo-
rithm, Total Variation (TV), and the PDIPM. According to
our results, the proposed LSRM produces more robust re-
sults in the presence of high level of noise (additive 60dB
Gaussian noise) and strong outliers (loss of measurement
data) when compared with the competing methods.

1 Introduction
Level set (LS) technique has gained a noticeable attention
in a variety of different applications ranged from computer
vision, image enhancement and segmentation to microchip
fabrication. The application of LS in inverse problem was
first proposed in 1996. Since then, LS was applied for im-
age reconstruction in linear inverse problems, such as x-
ray CT, PET, SPECT as well as in non-linear inverse prob-
lems, such as microwave imaging, non-destructive imaging,
near-infrared imaging, and electrical impedance tomography
(EIT). The representation of LS as part of a solution scheme

for ill-posed inverse problems is desirable because of the
high potential of LS in reconstructing 2D or 3D images from
few available data [5]. The LS based regularization method
(LSRM) considers the topological information of structures
unknown, without the need of knowing the number and the
origin of the structures, and reconstruct the structures us-
ing the evolution of a level set function which minimizes a
predefined cost functional. Most recently in [7], we show
the first clinical results of applying the LSRM in the im-
age reconstruction of lungs using EIT system, which is an
ill-posed inverse problem. In [7], we propose a LSRM us-
ing L2 norms on the inverse problem terms. Borsic and
Adler (2012) show the L2 norms are sensitive to spatial noise
and data loss (outliers). They propose the L1 norms as a
more solid alternative and discuss the minimization of the
L1 norm based inverse problem using primal-dual interior
point method (PDIPM). They show the L1 norms provide
higher robustness against outliers and noise when compared
with L2 norm based regularization method, such as Gauss-
Newton (GN) method. In this paper, we derive a novel
framework to solve a L1 norm based inverse problem us-
ing the LSRM. The developed LSRM, hereinafter called LS-
PDIPM, minimizes the L1 norms using the PDIPM. The pro-
posed LS-PDIPM is highly successful in dealing with high
level of spatial noise (60 dB Gaussian noise) and strong out-
liers. The performance of the proposed LS-PDIPM is com-
pared with that of four state of the art regularization meth-
ods, Gauss-Newton (GN) with Tikhonov regularization term
[8], GN with NOSER algorithm [4], Total Variation (TV)[3],
and the PDIPM [2], over the same simulated data of EIT. Our
results show the proposed LS-PDIPM is more robust against
additive 60 dB Gaussian noise and strong data outliers in the
comparison with the comparing methods.

2 Generalized PDIPM
A general primal problem can be written as follows

(P ) = argmin{
D1∑
i=1

|fdi(m)|+
D2∑
j=1

|fpj (m)|+‖gd(m)‖2+‖gp(m)‖2}

(1)
where fd(m) is a L1 norm based data mismatch term, fp(m)
is a L1 norm based regularization term, gd(m) is a L2 norm
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based data mismatch term, and gp(m) is a L2 norm based
regularization term. A primal minimization problem can
be formed through any combination of the error terms de-
fined in (1). The non-differentiability of L1 norm is resolved
through using a centering condition which is the replace-
ment of the L1 norm by a quadratic norm using an auxiliary
variable, called β. The Primal-Dual (PD) framework can be
formulated as

Cd(m) = fdi(m)− xdi
√
fdi(m)2 + β = 0, ∀i (2)

Cp(m) = fpj (m)− xpj
√
fpj (m)2 + β = 0, ∀j (3)

|xdi | ≤ 1, |xpj | ≤ 1 (4)

Fc(m) =
∂

∂m
(fd(m))xd +

∂

∂m
(fp(m))xp + (5)

∂

∂m
(‖gd(m)‖2) +

∂

∂m
(‖gp(m)‖2) = 0

The derived general Primal-Dual (PD) framework above
is solved iteratively using an iterative method, such as New-
ton method as follows

∂
δmFc(m) ∂

δxd
Fc(m) ∂

δxp
Fc(m)

∂
δmCd(m) ∂

δxd
Cd(m) ∂

δxp
Cd(m)

∂
δmCp(m) ∂

δxd
Cp(m) ∂

δxp
Cp(m)


 δm
δxd
δxp

 =

-

 Fc(m)

fd(m)− (
√
fd(m)2 + β)xd

fp(m)− (
√
fp(m)2 + β)xp

 (6)

where two auxiliary variables xd and xp are in the range
[−1, 1] depending on the absolute value of fd(m) and
fp(m); respectively. The primal variables (m) are updated
with a line search procedure, asm(k+1) = m(k) +λmδm

(k),
where k is the iteration number, δm is the update value with
a descend direction to the optimal point, and λ is the step
length [6]. In a similar manner, the dual variables (xd and
xp) are also updated using scaling rule as follows x(k+1) =
x(k) + min (1, ϕ∗) δx(k)[1], where ϕ∗ is a scalar value such
that ϕ∗ = sup

{
ϕ :
∣∣∣x(k)
i + ϕ δx

(k)
i

∣∣∣ ≤ 1, i = 1, . . . , n
}

.

3 Level Set
In this section, we formulate the solution of a system de-
fined as (1) using the proposed level set based PD-IPM, here-
inafter called LS-PDIPM. The solution of the L1L2 problem
is derived using the LS-PDIPM. The solutions for the L2L1
and L1L1 problems are analogous. In [2], Borsic and Adler
detail the PDIPM framework when applied for EIT.

3.1 LS-PDIPM for the L1L2 Problem
The level set function (Ψ) is a signed distance function
which is zero at the optimal solution and nonzero otherwise.
The minimum distance from the optimal solution is achieved
at zero level set function. The evolution of the level set func-
tion according to the minimization of a functional objective
function (primal problem), which can be a standard least

square error function, results in the optimal solution of an in-
verse problem. A mapping function (Φ) is used to project the
level set function onto finite element mesh (FEM). The level
set evolution function is as follows Ψk+1 = Ψk + λ(∆Ψ),
where Ψk+1 is the updated level set function, Ψk is the cur-
rent level set function, ∆Ψ is the update, Φ is the mapping
function, λ is the step size.

The primal formulation (P) for the L1L2 problem is
a special state of the general primal problem in (1) when
|fp(m)| = ‖gd(m)‖2 = 0 and can be written as

(P ) = argmin
Φ(Ψ)

{
∑
i

Wi|hi(Φ(Ψ))− di|+

α‖L(Φ(Ψ)− Φ(Ψ0))‖2} (7)
where |fd(m) is replaced by fd(Φ(Ψ)) = W |h(Φ(Ψ))−d|,
|gp(m) is replaced by gp(Φ(Ψ)) = α‖L(Φ(Ψ)−Φ(Ψ0))‖2,
W is a weighting diagonal matrix, Wi is the i-th diagonal el-
ement, hi(Φ(Ψ)) is the i-th forward measurement, di is the i-
th measured data, L is the regularization matrix, Φ(Ψ) is the
model parameter distribution or the primal variables, Φ(Ψ0)
is a reference model parameter distribution According to the
chain rule, the LS Jacobian matrix (JLS) can be written as
below JLS = ∂d

∂Ψ = ( ∂h
∂Φ(Ψ) )(∂Φ(Ψ)

∂Ψ ) = (JGN )(M). To
make the algorithm computationally efficient, we restrict the
Jacobian computation within a narrow band containing the
data (non-zeros). To construct the narrow band, we define
the level set function, or the signed distance function, to be
negative inside its boundary and positive outside. Matrix
M is non-zero within the narrow band and zero otherwise,
which is the notion of Dirac delta function. In every itera-
tion of the level set function (Ψ), we calculate the Jacobian
matrix (JLS) for the narrow band. We define a dual variable
xi in the range [−1, 1], depending on the absolute value of
Wi(d− h(Φ(Ψ))). The dual problem can be written as

(D) = argmin
Φ(Ψ)

{maxx xTW (h(Φ(Ψ))− d)+

α‖L(Φ(Ψ)−Φ(Ψ0))‖2}, with|x| ≤ 1 (8)
we define

[
xTW (h(Φ(Ψ))− d)

]
= D1. Taking the first

order derivative of D1 with respect to the level set function
results in
∂

∂Ψ
[D1] =

∂

∂Φ(Ψ)
[D1]

∂

∂Ψ
[Φ(Ψ)] = JTGNM

TWx,

(9)
where JTGNM

TWx = JTLSWx. We define ‖L(Φ(Ψ) −
Φ(Ψ0))‖2 = D2. Taking the first order derivative of D2

with respect to the level set function gives

∂

∂Ψ
[D2] = 2LTL(Φ(Ψ)− Φ(Ψ0))M =

2 MTLTL(Φ(Ψ)−Φ(Ψ0)) (10)
so the first order condition for the minimization in the
dual problem is JTLS(Φ(Ψ))Wx + 2αMTLTL(Φ(Ψ) −
Φ(Ψ0)) = 0. Nulling the difference between the primal and
dual problems gives us the following Primal-Dual gap

GPD =

D∑
i=1

{|Wi(h(Φ(Ψ))i − di)| − xiWi(h(Φ(Ψ))− d)} (11)
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the primal-dual GPD is null if, for each i, either
Wi(h(Φ(Ψ)) − d) = 0 or xi = Wi(h(Φ(Ψ)) −
d)/|Wi(h(Φ(Ψ)) − d)|. The complementarity condition
that nulls the PD gap is therefore |Wi(h(Φ(Ψ))i − di)| −
xiWi(h(Φ(Ψ))− d) = 0 ∀i. the LS based PD framework
can be written as

M∑
i=1

|Wi(h(Φ(Ψ))− di)| − xTW (h(Φ(Ψ))− d) = 0 (12)

|xi| ≤ 1

JTLS(Φ(Ψ))Wx+ 2αLTL(Φ(Ψ)− Φ(Ψ)ast) = 0

which constitutes the level set based PD method applied to
the primal problem defined in (7). The smoothed version
of LS based PD framework can be obtained through ap-
plying the centering condition which is the replacement of
|Wi(h(Φ(Ψ)) − di)| by

√
(Wi(h(Φ(Ψ))− di)2 + β, with

β > 0. Replacing |fp(m)| = 0| and ‖gd(m) = 0‖ in (2-6),
the smoothed LS based PD framework is achieved as

|xi| ≤ 1, (13)
Fc(Φ(Ψ)) = JTLS(Φ(Ψ))Wx+

2αMTLTL(Φ(Ψ)− Φ(Ψ0)) = 0, (14)

Cd(Φ(Ψ)) = (hi(Φ(Ψ))− di)−
xi
√

(hi(Φ(Ψ))− di)2 + β = 0, β > 0, (15)
and the Gauss Newton method is applied to solve for the
primal variables (Ψ) and the dual variables (x). To find the
optimal solution of the above newton system, the derivatives
of (15) and (14) with respect to ∂Ψ and ∂x is calculated and
the first order conditions are imposed. For (14), we have

∂

∂Ψ

[
JTLS(Φ(Ψ))Wx+ 2αMTLTL(Φ(Ψ)− Φ(Ψ0))

]
=

∂

∂Φ(Ψ)

[
JTLS(Φ(Ψ))Wx

] ∂

∂Ψ
[Φ(Ψ)] +

∂

∂Φ(Ψ)

[
2αMTLTL(Φ(Ψ)− Φ(Ψ0))

] ∂

∂Ψ
[Φ(Ψ)] =

2αMTLTLM, (16)

and

∂

∂x

[
JTLS(Φ(Ψ))Wx+ 2αMTLTL(Φ(Ψ)− Φ(Ψ0))

]
=

JTLS(Φ(Ψ))W, (17)
For (15), we have

∂

∂Ψ

[
(hi(Φ(Ψ))− di)− xi

√
(hi(Φ(Ψ))− di)2 + β

]
=

JLS(Φ(Ψ)) − XE−1FJLS(Φ(Ψ)) = (I −
XE−1F )JLS(Φ(Ψ)) (18)
where we define fi = hi(Φ(Ψ)) − di, F = diag(fi),
X = diag(xi), ηi =

√
f2
i + β, E = diag(ηi), and I is

the identity matrix. The partial derivatives of (15) with re-
spect to ∂x are

∂

∂x

[
(hi(Φ(Ψ))− di)− xi

√
(hi(Φ(Ψ))− di)2 + β

]
= −E,
(19)

we assume the Jacobian (JLS(Φ(Ψ)) is constant and does
not depend on the primal variables (Φ(Ψ)) at every itera-
tion of the LS based PD framework. The Newton system for
solving the primal problem using the derived LS-PDIPM,
which can also be obtained through applying the general so-
lution in (6), is as follows[

2αMTLTLM JTLSW
(I −XE−1F )JLS −E

] [
δΨ
δx

]
=

-
[
JTLSWx+ 2αMTLTL(Φ(Ψ)− Φ(Ψ0))

f − Ex

]
(20)

The derived set of equations in (20) are iteratively solved
for the primal variables (δΨ) and the dual variables (δx) us-
ing an iterative method such as Newton method. A tradi-
tional line search procedure [6] can be applied to find an
appropriate step length λΨ resulting in the update Ψ(k+1) =
Ψ(k) + λΨδΨ

(k), where k is the iteration number. A scaling
rule is applied to compute the updates for the dual variables
(x) [1].

4 Simulated Data
In our simulation, we apply the proposed LS-PDIPM to re-
construct images from the simulated data of EIT, as a highly
ill-posed and challenging inverse problem. EIT image re-
construction is the process to produce a conductivity dis-
tribution image of a medium using the injection of electri-
cal current into the medium and the collection of the result-
ing difference voltages across the electrodes attached to the
boundary of the medium. We simulated EIT with 16 elec-
trodes on one electrode plane discretized using a circular
FEM. Figure 1 shows the used 2D phantom to generate sim-
ulated data with 1024 mesh elements. The phantom contains
two sharp inclusions with the same conductivity located in
the upper and the lower part of the mesh. The background
conductivity value is 1 S/m and the inclusions have the con-
ductivity of 0.9 S/m. The inverse problem used the mesh
density of 576 elements, which was different than the mesh
density of the forward problem (1024 elements).

(a) (b) (c)

Figure 1: EIT Image reconstruction using the proposed
LSRM. (a) 2D phantom. (b) The iterations of the LS-PDIPM
(c) The final reconstructed image.
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5 Results
We show the EIT reconstructed images of the proposed LS-
PDIPM when applied to solve a primal problem with L1
norm on both the data mismatch and the regularization term
(L1L1 problem). The reason of choosing the L1L1 formu-
lation is because the L1 norms has been shown to offer the
highest robustness to spatial noise and outliers [2]. The in-
verse solution is calculated using the proposed LS-PDIPM
with β = 1 × 10−12. The stopping term to terminate the
iterations depends on the value of the primal dual gap com-
puted in every iteration of the LS-PDIPM. According to our
experiments, 20 iterations for the LS-PDIPM were suffi-
cient to reach to convergence. Figure 1(a) shows the applied
2D phantom with two inclusions with conductivity of 0.9
S/m. The reconstructed images for every iteration of the
LS-PDIPM are shown in figure 1(b). The final reconstructed
image using the LS-PDIPM is demonstrated in figure 1(c).
Figure 2 compares the performance of the developed LS-
PDIPM with four state of the art regularization methods, GN
with Tikhonov regularization term, GN with NOSER algo-
rithm, Total Variation (TV), and PDIPM with L1 norms on
the data mismatch and regularization terms. To account for
the possible systematic and random errors occurring in EIT
data acquisition process, we consider four possible measure-
ment conditions: 1) when there is no noise and data outliers
(figure 2(a)), 2) with the presence of additive 60 dB Gaus-
sian noise (figure 2(b)), 3) with the presence of strong data
outliers (figure 2(c)), and 4) when there are both the 60 dB
Gaussian noise and data outliers (figure 2(d)). GN methods
(column 1 and 2 in figure 2) totally fails in the presence of
noise and data outliers. TV is slightly robust to the additive
noise; however, it fails in the presence of data outliers (col-
umn 3 in figure 2). PDIPM shows robust results when there
exists either noise or data outliers; however, it fails when we
perturb the EIT simulated data with 60 dB Gaussian noise
plus a strong data outliers (column 4 in figure 2). The pro-
posed LS-PDIPM is the winner method which is not highly
suffered from the measurement noise and data outliers. The
reconstruction images of the LS-PDIPM (column 4 in fig-
ure 2) are sharp images with little image artifacts when the
EIT simulated data are perturbed by synthetic additive 60 dB
Gaussian noise and strong data outliers.

(a)

(b)

(c)

(d)

GN_Tikhonov GN_Noser Total Variation PDIPM Level Set

Figure 2: Comparison between the proposed LS-PDIPM and
four state of the art regularization methods. (a) no additive
noise and outliers. (b) with added 60 dB Gaussian noise. (c)
with strong loss of data (outliers). (d) with 60 dB Gaussian
noise and strong outliers.

6 Conclusion
We derive a novel level set based regularization method,
called LS-PDIPM, that allows any possible combination of
norms (L1 norm or L2 norm) on the data term and the reg-
ularization term. The proposed LS-PDIPM incorporates the
benefit of applying level set technique to reconstruct sharp
images as well as using the L1 norms in the formulation
of inverse problems, which the later makes the reconstruc-
tion algorithm robust to noise and data outliers. We com-
pared the LS-PDIPM with four state of the art regularization
methods, GN with Tikhonov regularization term, GN with
NOSER algorithm, Total Variation, and PDIPM. We show
the LS-PDIPM performs better in reconstructing highly ro-
bust images against strong spatial noise and data outliers
when compared with the competing methods (figure 2). We
believe the LS-PDIPM can be successfully applied in a va-
riety of inverse problem applications raised in engineering,
geophysics, and life science. An extended version of the LS-
PDIPM with several experimental results is currently under
way.
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