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ABSTRACT 

The control of upper limb prostheses based 

on surface electromyogram (EMG) pattern 

recognition has long been the focus of many 

researchers as an important clinical option for 

amputees. More recently, it has been shown 

that changes induced during use, such as 

changes in limb position and performing 

dynamic activities, can have a substantial 

impact on the robustness of EMG pattern 

recognition. This work investigates whether 

there are alternative EMG features and 

classifiers which can outperform the commonly 

used time domain (TD) features and linear 

discriminant analysis (LDA) classifier in the 

context of limb positional changes and 

performing dynamic activities of daily living. A 

variety of EMG feature combinations and 

popular classifiers are compared in this study. 

The bases of comparison are classification 

accuracy and class separability. The results 

showed that adding Willison amplitude (WAMP) 

feature to the commonly used TD feature set 

combined with LDA classifier reduces the 

averaged absolute classification error by 1.4%. 

INTRODUCTION 

Surface electromyogram (EMG) has been 

used as one of the major neural control sources 

for powered upper limb prostheses for many 

decades. It contains useful information about 

the neuromuscular activity from which it 

originates. Various EMG signal processing 

methods have been used to extract user’s 

intent for movement of the prosthetic limb. 

Pattern recognition-based myoelectric 

control is an intelligent and advanced signal 

processing technique that can potentially be 

used to control multiple degrees of freedom 

(DOF). In this approach, a set of features 

containing spatial and temporal information 

about the acquired signals are extracted and 

form an input pattern to a classifier which 

determines the user’s intended movement. 

Many researchers have reported high 

classification accuracies using various 

combinations of preprocessing, feature 

extraction, classification, and postprocessing 

[1-3]. However, most of these studies were 

done in unrealistically ideal conditions 

performing static contractions in fixed positions. 

Contrarily, in real-world prosthetic use, the 

user is required to elicit contractions in a 

variety of positions and orientations, and under 

different loading conditions. Newer studies [4-

6] have shown that these conditions might 

affect signal patterns and erode the robustness 

of the EMG pattern recognition. 

Feature sets and classifiers used for EMG 

pattern recognition may provide different levels 

of robustness when using data collected during 

dynamic limb movements compared to data 

from static tasks. Englehart and Hudgins [1] 

showed that Linear discriminant analysis (LDA) 

classifier combined with four time domain 

features including mean absolute value (MAV), 

wave length (WL), zero crossing (ZC), and 

slope sign change (SSC) can be used as an 

effective real-time control scheme for EMG 

pattern recognition for static conditions. This 

combination has since been widely reported in 

the literature as a promising myoelectric control 

scheme [1, 4, 5]. Herein, we investigated the 

general impact of limb positional changes and 

performing dynamic activities on the robustness 

of various feature sets and classifiers to explore 

alternative feature sets and classifiers that may 

outperform the commonly used LDA classifier 

and TD features during dynamic movement.  

METHODOLOGY 

Data Collection and Experimental Protocol 

We used the data that was acquired as a 

part of a study by Scheme et al. [5]. Subjects 
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were prompted to elicit a set of contractions at 

a repeatable ‘medium’ force level consisting of 

the following eight classes of motion: wrist 

flexion/extension, wrist pronation/supination, 

hand open, power grip, pinch grip, and a no 

motion (i.e. rest) class. These sets were 

repeated during three sessions, each involving 

a different form of positional variation. 

In session 1, the contractions were sustained 

while holding the arm in five different static 

positions. In session 2, subjects executed 

motions while performing two dynamic 

activities, and in session 3, four activities of 

daily living (ADLs) were completed while 

holding each of the eight classes of motion [5]. 

Four sets of contractions were collected in each 

of the sessions. Two of these sets were used for 

training and two were used for testing. The 

ADLs were only used for testing. Contractions 

were held for 3, 8, and 4 seconds when 

performing static tasks, dynamic tasks, and 

ADLs, respectively, with 3 second inter-

repetition delays. Similarly to [5], nine training 

and testing scenarios (SC) were investigated 

which are listed in Table 1. The scenarios in 

which only one static or dynamic position was 

used for training were repeated for every 

possible position and the results were 

averaged.  

Table 1: Training/Testing scenarios 

Title 

Feat
ure 
Set 

Training Data Testing Data 

SC1 One static position All static positions 

SC2 One static position Same static position 

SC3 All static positions All static positions 

SC4 One static position All ADLs 

SC5 All static positions All ADLs 

SC6 One dynamic motion All static positions 

SC7 All dynamic motions All static positions 

SC8 One dynamic motion All ADLs 

SC9 All dynamic motions All ADLs 

Data Processing and Feature Extraction 

EMG data were notch filtered at 60Hz using 

a 3rd order Butterworth filter in order to 

remove any power line interference. Data were 

segmented for feature extraction using 200ms 

windows, with processing increments of 50ms. 

Nine frequently reported time-domain 

features for pattern recognition of myoelectric 

signals were extracted within each analysis 

time window. We chose only time-domain 

features that do not require additional signal 

transformation to keep computational 

complexity low.  

The following features were extracted [1, 

7]: Mean Absolute Value (MAV), Mean Absolute 

Value Slope (MAVs), Waveform Length (WL), 

Zero Crossings (ZC), Slope Sign Changes 

(SSC), Willison Amplitude (WAMP), Variance 

(VAR), Log-Detector (LD), and 4th order 

Autoregression Coefficients (AR).    

Classification 

Data were classified using six commonly 

used classification techniques including  

K-nearest neighbor (KNN) [8], support vector 

machines (SVM) [9], neural network (NN) [2], 

Fuzzy clustering (FC) [10], linear discriminant 

analysis (LDA) [11], and Mahalonobis distance 

(MD) [12]. 

Evaluation 

Two metrics were computed to evaluate the 

suitability of features and classifiers: 

1) Class Separability: Feature sets that 

provide higher class separability are expected 

to result in lower misclassification rates.  

We used the Davies-Bouldin cluster 

separation measure [13] to quantify class 

separability, which is obtained by averaging the 

worst case separation of each cluster from the 

others. In fact, the DB metric indicates how 

badly the clusters overlap their nearest 

neighbors. A lower DB means higher cluster 

separability. This index has been used in a 

variety of classification problems [7, 13]. 

2) Classification Error: In general, the 

optimum pattern recognition method is 

expected to be the one that provides minimum 

classification error.  

RESULTS 

We tested all possible combinations of nine 

TD features described in the feature extraction 

section and picked the ten most interesting 

feature sets based on classification accuracy 

and feature combination. These feature sets are 

listed in Table 2.  
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Table 2: Selected feature sets 

Title 

Feat
ure 

Set 

Feature Combination 

FS1 MAV, WL, ZC, SSC 

FS2 WL, ZC, WAMP 

FS3 MAV, ZC, SSC, WAMP 

FS4 MAV, WL, ZC, WAMP 

FS5 WL, ZC, WAMP, VAR 

FS6 WL, ZC, SSC, WAMP 

FS7 MAV, WL, ZC, SSC, WAMP 

FS8 MAV, WL, ZC, SSC, AR 

FS9 MAV, WL, ZC, SSC, WAMP, AR 

FS10 MAV, WL, ZC, SSC, MAVS, VAR, WAMP, LD, AR 

Class separability 

Figure 1 shows the average DB index along 

with the standard error for all ten feature sets. 

Each feature was normalized between zero and 

one for this test. An analysis of variance 

(ANOVA) was completed using the DB index for 

all scenarios. A general linear model was used 

with subject as a random factor, and scenario 

and trial as fixed factors. The ANOVA showed 

that all of the feature combinations except FS8 

were significantly better (p < 0.05) than FS1 

which implies that these feature combinations 

provide higher class separability and 

consequently are likely to provide higher 

classification accuracy.  

 
Figure 1: Comparison of feature sets using DB  

Classification Error 

Classification error (CE) was calculated for 

each of the aforementioned classification 

schemes taking into consideration everything 

including data from all users using all ten 

feature sets and for all training and testing 

scenarios. Figure 2 shows the mean 

classification error using these classifiers. The 

results of performing the ANOVA test using the 

classification error showed that LDA is 

significantly better (p < 0.05) than other 

classifiers. Subject was considered as a random 

factor and scenario, trial and used feature set 

were considered as fixed factors. 

 
Figure 2: Comparison of classifiers using CE  

 

In another test, CE was calculated for each 

of the ten feature sets using only the LDA 

classifier and for all scenarios. The averaged CE 

along with standard error is depicted in Figure 

3. An ANOVA test showed that FS6, FS7, FS9 

and FS10 are significantly (p < 0.05) better 

than FS1. Also, FS9 and FS10 were significantly 

better than all other feature sets except FS7. 

Subject was a random factor, and scenario, trial 

and applied classifier were fixed factors. 

 
Figure 3: Comparison of feature sets using CE 

DISCUSSION 

The comparison of classifiers (see Figure 2) 

showed that LDA can still be considered as a 

good classifier with regard to classification 

accuracy in the context of dynamic movements. 

Its high performance along with its ease of 

implementation makes it an ideal real-time 

classifier for myoelectric pattern recognition.  

Results of comparing all ten feature sets 

listed in Table 2 (see Figure 3) are to some 

extent in agreement with the results of 

comparing class separability provided by each 

of these feature sets (See Figure 1). As the 

class separability increases, classification error 

decreases. These results show that 

performance of the commonly used TD feature 

set can be improved by adding or replacing 
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some of its features with other features. This 

could be explained as added or replaced 

features contain complementary information 

that is particularly useful for myoelectric 

pattern classification. Figure 4 shows the 

averaged correlation between different features 

within a trial using data from all static and 

dynamic training scenarios. Features that are 

less correlated are expected to provide 

complementary information about the signal. 

However, their degree of correlation does not 

relate directly to the amount of useful 

information they provide for classification. 

Amongst the feature sets tested, FS8, FS9, 

and FS10 contain AR feature which is not a 

practical real-time feature for clinical embedded 

system implementation. Excluding these three 

feature sets, FS6 and FS7 seem to be most 

promising feature sets which are both 

significantly better than FS1 (See Figure 3). 

The former, however, is the best choice if 

increasing the dimensionality of the problem is 

not desired. Figure 5 compares averaged 

classification error using FS1, FS6, and FS7 

combined with LDA classifier for each of nine 

scenarios described in Table 1. As it can be 

seen, error has been consistently reduced for 

all static and dynamic training/testing 

scenarios. Results showed that FS6 and FS7 

reduce averaged absolute classification error, 

with respect to FS1, by 1.2% and 1.4% 

respectively (13% and 15% relative reduction). 

 
Figure 5: Comparison of FS1, FS6, and FS7 
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Figure 4: Averaged computed correlation between different features (darker means closer to 1) 
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